Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 414(17): 4861-4875, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35538229

RESUMO

Lysine residues of proteins slowly react with glucose forming Amadori products. In hyperglycemic conditions, such as diabetes mellitus, this non-enzymatic glycation becomes more pervasive causing severe medical complications. The structure and conformation of a protein predisposes lysine sites to differing reactivity influenced by their steric availability and amino acid microenvironment. The goal of our study was to identify these sites in albumin and measure glycation affinities of lysine residues. We applied a bottom-up approach utilizing a combination of three LC-MS instruments: timsTOF, Orbitrap, and QTRAP. To prove applicability to samples of varying glycemic status, we compared in vitro glycated and non-glycated HSA, as well as diabetic and non-diabetic individual samples. The analysis of lysine glycation affinities based on peptide intensities provide a semi-quantitative approach, as the results depend on the mass spectrometry platform used. We found that glycation levels based on multiple reaction monitoring (MRM) quantitation better reflect individual glycemic status and that the glycation percentage for each site is in linear relation to all other sites. To develop an approach which more accurately reflects glycation affinity, we developed a kinetics model which uses results from stable isotope dilution HPLC-MRM methodology. Through glycation of albumin at different glucose concentrations, we determine the rate constants of glycation for every lysine residue by simultaneous comparative analysis.


Assuntos
Lisina , Albumina Sérica Humana , Glucose/química , Glicosilação , Humanos , Cinética , Lisina/metabolismo , Albumina Sérica Humana/metabolismo
2.
Nanoscale Adv ; 1(12): 4665-4668, 2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36133135

RESUMO

Bimetallic Au x Ag1-x nanoparticles, prepared using sodium borohydride as the sole reducing and capping agent for various NaBH4 : metal molar ratios, were investigated as catalysts for 4-nitrophenol reduction. This approach yielded the highest catalytic activities observed for this model reaction to date.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA