Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Alcohol Clin Exp Res ; 43(3): 425-438, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30589435

RESUMO

BACKGROUND: Alcohol-related brain damage (ARBD) is associated with neurotoxic effects of heavy alcohol use and nutritional deficiency, in particular thiamine deficiency (TD), both of which induce inflammatory responses in brain. Although neuroinflammation is a critical factor in the induction of ARBD, few studies have addressed the specific contribution(s) of ethanol (EtOH) versus TD. METHODS: Adult rats were randomly divided into 6 conditions: chronic EtOH treatment (CET) where rats consumed a 20% v/v solution of EtOH for 6 months; CET with injections of thiamine (CET + T); severe pyrithiamine-induced TD (PTD); moderate PTD; moderate PTD during CET; and pair-fed controls. After the treatments, the rats were split into 3 recovery phase time points: the last day of treatment (time point 1), acute recovery (time point 2: 24 hours posttreatment), and delayed recovery (time point 3: 3 weeks posttreatment). At these time points, vulnerable brain regions (thalamus, hippocampus, frontal cortex) were collected and changes in neuroimmune markers were assessed using a combination of reverse transcription polymerase chain reaction and protein analysis. RESULTS: CET led to minor fluctuations in neuroimmune genes, regardless of the structure being examined. In contrast, PTD treatment led to a profound increase in neuroimmune genes and proteins within the thalamus. Cytokine changes in the thalamus ranged in magnitude from moderate (3-fold and 4-fold increase in interleukin-1ß [IL-1ß] and IκBα) to severe (8-fold and 26-fold increase in tumor necrosis factor-α and IL-6, respectively). Though a similar pattern was observed in the hippocampus and frontal cortex, overall fold increases were moderate relative to the thalamus. Importantly, neuroimmune gene induction varied significantly as a function of severity of TD, and most genes displayed a gradual recovery across time. CONCLUSIONS: These data suggest an overt brain inflammatory response by TD and a subtle change by CET alone. Also, the prominent role of TD in the immune-related signaling pathways leads to unique regional and temporal profiles of induction of neuroimmune genes.


Assuntos
Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Etanol/efeitos adversos , Mediadores da Inflamação/metabolismo , Deficiência de Tiamina/metabolismo , Tiamina/farmacologia , Animais , Biomarcadores/metabolismo , Lobo Frontal/metabolismo , Hipocampo/metabolismo , Masculino , Piritiamina , Ratos , Tálamo/metabolismo , Deficiência de Tiamina/induzido quimicamente , Fatores de Tempo , Ativação Transcricional/efeitos dos fármacos
2.
Cereb Cortex ; 27(7): 3713-3723, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27473323

RESUMO

The retrosplenial cortex (RSC) plays an important role in memory and spatial navigation. It shares functional similarities with the hippocampus, including the presence of place fields and lesion-induced impairments in spatial navigation, and the RSC is an important source of visual-spatial input to the hippocampus. Recently, the RSC has been the target of intense scrutiny among investigators of human memory and navigation. fMRI and lesion data suggest an RSC role in the ability to use landmarks to navigate to goal locations. However, no direct neurophysiological evidence of encoding navigational cues has been reported so the specific RSC contribution to spatial cognition has been uncertain. To examine this, we trained rats on a T-maze task in which the reward location was explicitly cued by a flashing light and we recorded RSC neurons as the rats learned. We found that RSC neurons rapidly encoded the light cue. Additionally, RSC neurons encoded the reward and its location, and they showed distinct firing patterns along the left and right trajectories to the goal. These responses may provide key information for goal-directed navigation, and the loss of these signals may underlie navigational impairments in subjects with RSC damage.


Assuntos
Córtex Cerebral/citologia , Sinais (Psicologia) , Objetivos , Neurônios/fisiologia , Recompensa , Navegação Espacial/fisiologia , Potenciais de Ação/fisiologia , Análise de Variância , Animais , Lateralidade Funcional , Masculino , Aprendizagem em Labirinto/fisiologia , Ratos , Ratos Long-Evans
3.
Learn Mem ; 24(2): 81-85, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28096497

RESUMO

Thiamine deficiency (TD), commonly associated with chronic alcoholism, leads to diencephalic damage, hippocampal dysfunction, and spatial learning and memory deficits. We show a decrease in the magnitude of long-term potentiation (LTP) and paired-pulse facilitation (PPF) at CA3-CA1 synapses, independent of sex, following diencephalic damage induced by TD in rats. Thus, despite a lack of extensive hippocampal cell loss, diencephalic brain damage down-regulates plastic processes within the hippocampus, likely contributing to impaired hippocampal-dependent behaviors. However, both measures of hippocampal plasticity (LTP, PPF) were restored with brain-derived neurotrophic factor (BDNF), revealing an avenue for neural and behavioral recovery following diencephalic damage.


Assuntos
Lesões Encefálicas/etiologia , Fator Neurotrófico Derivado do Encéfalo/uso terapêutico , Diencéfalo/patologia , Hipocampo , Potenciação de Longa Duração/efeitos dos fármacos , Deficiência de Tiamina/complicações , Animais , Antimetabólitos/toxicidade , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Modelos Animais de Doenças , Estimulação Elétrica , Feminino , Hipocampo/metabolismo , Hipocampo/patologia , Hipocampo/fisiopatologia , Potenciação de Longa Duração/fisiologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Piritiamina/toxicidade , Ratos , Deficiência de Tiamina/induzido quimicamente , Deficiência de Tiamina/patologia
4.
Alcohol Clin Exp Res ; 39(11): 2143-53, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26419807

RESUMO

BACKGROUND: Many alcoholics display moderate to severe cognitive dysfunction accompanied by brain pathology. A factor confounded with prolonged heavy alcohol consumption is poor nutrition, and many alcoholics are thiamine deficient. Thus, thiamine deficiency (TD) has emerged as a key factor underlying alcohol-related brain damage (ARBD). TD in humans can lead to Wernicke Encephalitis that can progress into Wernicke-Korsakoff syndrome and these disorders have a high prevalence among alcoholics. Animal models are critical for determining the exact contributions of ethanol (EtOH)- and TD-induced neurotoxicity, as well as the interactions of those factors to brain and cognitive dysfunction. METHODS: Adult rats were randomly assigned to 1 of 6 treatment conditions: chronic EtOH treatment (CET) where rats consumed a 20% v/v solution of EtOH over 6 months; severe pyrithiamine-induced TD (PTD-moderate acute stage); moderate PTD (PTD-early acute stage); moderate PTD followed by CET (PTD-CET); moderate PTD during CET (CET-PTD); and pair-fed (PF) control. After recovery from treatment, all rats were tested on spontaneous alternation and attentional set-shifting. After behavioral testing, brains were harvested for determination of mature brain-derived neurotrophic factor (BDNF) and thalamic pathology. RESULTS: Moderate TD combined with CET, regardless of treatment order, produced significant impairments in spatial memory, cognitive flexibility, and reductions in brain plasticity as measured by BDNF levels in the frontal cortex and hippocampus. These alterations are greater than those seen in moderate TD alone, and the synergistic effects of moderate TD with CET lead to a unique cognitive profile. However, CET did not exacerbate thalamic pathology seen after moderate TD. CONCLUSIONS: These data support the emerging theory that subclinical TD during chronic heavy alcohol consumption is critical for the development of significant cognitive impairment associated with ARBD.


Assuntos
Transtornos Cognitivos/sangue , Etanol/toxicidade , Aprendizagem em Labirinto/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Memória Espacial/efeitos dos fármacos , Deficiência de Tiamina/sangue , Consumo de Bebidas Alcoólicas/efeitos adversos , Consumo de Bebidas Alcoólicas/sangue , Animais , Transtornos Cognitivos/induzido quimicamente , Transtornos Cognitivos/psicologia , Etanol/administração & dosagem , Masculino , Aprendizagem em Labirinto/fisiologia , Plasticidade Neuronal/fisiologia , Ratos , Ratos Sprague-Dawley , Memória Espacial/fisiologia , Deficiência de Tiamina/complicações , Deficiência de Tiamina/psicologia
5.
Hippocampus ; 23(1): 108-15, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22965452

RESUMO

17ß-estradiol (E2), at high circulating levels, enhances learning and memory in many women, making it a clinical treatment for hormone-related cognitive decline in aging. However, the mechanisms stimulated by E2, which are responsible for its cognitive enhancing effects, remain incompletely defined. Using an ovariectomized rat model, we previously reported that increasing plasma E2 enhances the magnitude of long-term potentiation (LTP) at hippocampal CA3-CA1 synapses, which is caused by a selective increase in current mediated by NR2B-containing NMDARs, leading to an increase in the NMDAR/AMPAR ratio. Whether the increase in NR2B current is causally related to the ability of E2 to enhance hippocampal dependent learning and memory has yet to be tested. Here, we find that E2 enhances performance in the novel object recognition (NOR) task with the same time course we previously showed E2 enhances the LTP magnitude, temporally linking the increase in LTP to enhanced learning and memory. Furthermore, using the selective NR2B subunit antagonist Ro25-6981, we find that the E2-enhanced NOR, like the enhanced LTP, requires hippocampal NR2B-containing NMDARs, specifically in area CA1. Finally, using whole-cell recordings and the phosphatase inhibitor orthovanadate, we investigated whether the E2-induced increase in NMDAR current is caused by an increase in the density of synaptic NMDARs and/or an increase in NMDAR subunit phosphorylation. We find that both mechanisms are responsible for the enhanced NMDAR current in E2-treated rats. Our results show that the E2-enhanced NOR requires a functional increase in NR2B-containing NMDARs, a requirement shared with the E2-enhanced LTP magnitude at CA3-CA1 synapses, supporting the hypothesis that the increase in LTP likely contributes to the enhanced learning and memory following an increase in plasma E2 levels.


Assuntos
Região CA1 Hipocampal/fisiologia , Região CA3 Hipocampal/fisiologia , Estradiol/sangue , Percepção de Forma/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia , Animais , Região CA1 Hipocampal/efeitos dos fármacos , Região CA3 Hipocampal/efeitos dos fármacos , Estradiol/farmacologia , Feminino , Percepção de Forma/efeitos dos fármacos , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/fisiologia , Ovariectomia , Técnicas de Patch-Clamp , Reconhecimento Visual de Modelos/efeitos dos fármacos , Fenóis/farmacologia , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Piperidinas/farmacologia , Ratos , Ratos Sprague-Dawley , Tempo de Reação/fisiologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores
6.
Proc Natl Acad Sci U S A ; 107(45): 19543-8, 2010 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-20974957

RESUMO

Whether estrogen replacement is beneficial to cognitive health is controversial. Some studies have shown that estrogen replacement therapy (ERT) relieves memory impairment associated with menopause in women, whereas others suggest that estrogen not only is incapable of providing a benefit, but actually can be detrimental. One possible explanation for this discrepancy in study findings could be the varying time after menopause at which ERT is initiated. It has been proposed that a critical period exists during which ERT must be administered to enhance cognitive function. This idea has yet to be tested directly using functional synaptic studies, however. Here we investigated whether prolonged hormone deprivation caused by ovariectomy (OVX) in young adult rats prevents the ability of estrogen replacement to increase synaptic function in the hippocampus to a degree necessary for estrogen-induced improvement in learning and memory. Remarkably, estrogen replacement was found to increase long-term potentiation, the current mediated by NR2B-containing NMDA receptors, and the dendritic spine density at CA3-CA1 synapses up to 15 months post-OVX. However, by 19 months post-OVX, the same estrogen replacement was unable to induce these changes. Importantly, this loss of estrogen's effectiveness was seen to be a consequence of the duration of deprivation. In female rats aged with their ovaries intact and examined at the same chronological age as the 19-month post-OVX group, estrogen replacement significantly increased synaptic function and spine density. These data clearly demonstrate that a critical period exists during which ERT must be administered, and that once this period passes, the beneficial effects are lost.


Assuntos
Estrogênios/farmacologia , Hipocampo/fisiologia , Menopausa/fisiologia , Transmissão Sináptica/efeitos dos fármacos , Fatores Etários , Animais , Terapia de Reposição de Estrogênios/métodos , Estrogênios/administração & dosagem , Estrogênios/uso terapêutico , Feminino , Ratos , Fatores de Tempo
7.
Behav Neurosci ; 132(5): 356-365, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30070553

RESUMO

The retrosplenial cortex (RSC) has recently begun to gain widespread interest because of its anatomical connectivity with other well-known memory structures, such as the hippocampus and anterior thalamus, and its role in spatial, contextual, and episodic memory. Although much of the current work on the RSC is focused on spatial cognition, there is also an extensive literature that shows that the RSC plays a critical role in a variety of conditioning tasks that have no obvious spatial component. Many of these studies suggest that the RSC is involved in identifying and encoding behaviorally significant cues, particularly those cues that predict reinforcement or the need for a behavioral response. Consistent with this idea, recent studies have shown that RSC neurons also encode cues in spatial navigation tasks. In this article, we review these findings and suggest that the encoding of cues is an important component of the RSC contribution to many forms of learning. (PsycINFO Database Record (c) 2018 APA, all rights reserved).


Assuntos
Comportamento/fisiologia , Córtex Cerebral/fisiologia , Processos Mentais/fisiologia , Animais , Humanos
8.
Neuroscience ; 348: 324-334, 2017 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-28257889

RESUMO

Chronic intermittent exposure to ethanol (EtOH; CIE) that produces binge-like levels of intoxication has been associated with age-dependent deficits in cognitive functioning. Male Sprague-Dawley rats were exposed to CIE (5g/kg, 25% EtOH, 13 intragastric gavages) beginning at three ages: early adolescence (postnatal day [PD] 28), mid-adolescence (PD35) and adulthood (PD72). In experiment 1, rats were behaviorally tested following CIE. Spatial memory was not affected by CIE, but adult CIE rats were impaired at acquiring a non-spatial discrimination task and subsequent reversal tasks. Rats exposed to CIE during early or mid-adolescence were impaired on the first reversal, demonstrating transient impairment in behavioral flexibility. Blood EtOH concentrations negatively correlated with performance on reversal tasks. Experiment 2 examined changes in brain-derived neurotrophic factor (BDNF) levels within the frontal cortex (FC) and hippocampus (HPC) at four time points: during intoxication, 24 h after the final EtOH exposure (acute abstinence), 3 weeks following abstinence (recovery) and after behavioral testing. HPC BDNF levels were not affected by CIE at any time point. During intoxication, BDNF was suppressed in the FC, regardless of the age of exposure. However, during acute abstinence, reduced FC BDNF levels persisted in early adolescent CIE rats, whereas adult CIE rats displayed an increase in BDNF levels. Following recovery, neurotrophin levels in all CIE rats recovered. Our results indicate that intermittent binge-like EtOH exposure leads to acute disruptions in FC BDNF levels and long-lasting behavioral deficits. However, the type of cognitive impairment and its duration differ depending on the age of exposure.


Assuntos
Comportamento Animal/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Etanol/administração & dosagem , Lobo Frontal/efeitos dos fármacos , Fatores Etários , Animais , Aprendizagem por Discriminação/efeitos dos fármacos , Lobo Frontal/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Ratos , Ratos Sprague-Dawley , Reversão de Aprendizagem/efeitos dos fármacos
9.
Neurobiol Aging ; 35(10): 2183-92, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24813636

RESUMO

We previously reported that treating aged female rats, ovariectomized (OVX) as young adults, with acute proestrous levels of 17ß estradiol (E2) increases CA1 spine density, NMDAR to AMPAR ratio, GluN2B-mediated NMDAR current, and long-term potentiation at CA3-CA1 synapses if administered by 15, but not at 19-month post-OVX, defining the critical window of opportunity. Importantly, when rats are aged with ovaries intact until OVX at 20 months, hippocampal E2 responsiveness is maintained, indicating the deficit at 19-month post-OVX is a consequence of the duration of hormone deprivation and not chronological age. Here, we find the beneficial effect of E2 on novel object recognition in OVX rats was constrained by the same critical window. Furthermore, chronic low-level E2 replacement, commenced by 11-month post-OVX using subcutaneous capsules removed 2 weeks before acute proestrous E2 treatment, prevents the loss of hippocampal responsiveness at 19-month post-OVX. These data define the dynamic nature of the critical window showing that chronic replacement with physiological E2 levels within a certain period post-OVX can lengthen the window.


Assuntos
Envelhecimento/fisiologia , Estradiol/administração & dosagem , Terapia de Reposição de Estrogênios , Hipocampo/fisiologia , Sinapses/fisiologia , Fatores Etários , Animais , Estradiol/metabolismo , Estradiol/farmacologia , Feminino , Potenciação de Longa Duração/efeitos dos fármacos , Ovariectomia , Ratos Sprague-Dawley , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Fatores de Tempo
10.
Front Hum Neurosci ; 8: 586, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25140141

RESUMO

Spatial navigation requires memory representations of landmarks and other navigation cues. The retrosplenial cortex (RSC) is anatomically positioned between limbic areas important for memory formation, such as the hippocampus (HPC) and the anterior thalamus, and cortical regions along the dorsal stream known to contribute importantly to long-term spatial representation, such as the posterior parietal cortex. Damage to the RSC severely impairs allocentric representations of the environment, including the ability to derive navigational information from landmarks. The specific deficits seen in tests of human and rodent navigation suggest that the RSC supports allocentric representation by processing the stable features of the environment and the spatial relationships among them. In addition to spatial cognition, the RSC plays a key role in contextual and episodic memory. The RSC also contributes importantly to the acquisition and consolidation of long-term spatial and contextual memory through its interactions with the HPC. Within this framework, the RSC plays a dual role as part of the feedforward network providing sensory and mnemonic input to the HPC and as a target of the hippocampal-dependent systems consolidation of long-term memory.

11.
Psychoneuroendocrinology ; 34 Suppl 1: S130-42, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19596521

RESUMO

When circulating estrogen levels decline as a natural consequence of menopause and aging in women, there is an increased incidence of deficits in working memory. In many cases, these deficits are rescued by estrogen replacement therapy. These clinical data therefore highlight the importance of defining the biological pathways linking estrogen to the cellular substrates of learning and memory. It has been known for nearly two decades that estrogen enhances dendritic spine density on apical dendrites of CA1 pyramidal cells in hippocampus, a brain region required for learning. Interestingly, at synapses between CA3-CA1 pyramidal cells, estrogen has also been shown to enhance synaptic NMDA receptor current and the magnitude of long-term potentiation, a cellular correlate of learning and memory. Given that synapse density, NMDAR function, and long-term potentiation at CA3-CA1 synapses in hippocampus are associated with normal learning, it is likely that modulation of these parameters by estrogen facilitates the improvement in learning observed in rats, primates and humans following estrogen replacement. To facilitate the design of clinical strategies to potentially prevent or reverse the age-related decline in learning and memory during menopause, the relationship between the estrogen-induced morphological and functional changes in hippocampus must be defined and the role these changes play in facilitating learning must be elucidated. The aim of this report is to provide a summary of the proposed mechanisms by which this hormone increases synaptic function and in doing so, it briefly addresses potential mechanisms contributing to the estrogen-induced increase in synaptic morphology and plasticity, as well as important future directions.


Assuntos
Região CA1 Hipocampal/fisiologia , Região CA3 Hipocampal/fisiologia , Espinhas Dendríticas/fisiologia , Estradiol/fisiologia , Potenciação de Longa Duração/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia , Animais , Região CA1 Hipocampal/efeitos dos fármacos , Região CA3 Hipocampal/efeitos dos fármacos , Espinhas Dendríticas/efeitos dos fármacos , Estradiol/farmacologia , Ácido Glutâmico/metabolismo , Potenciação de Longa Duração/efeitos dos fármacos , Modelos Neurológicos , Inibição Neural/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Sinapses/fisiologia , Ácido gama-Aminobutírico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA