Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 214
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Arch Microbiol ; 206(3): 127, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38416201

RESUMO

Globally, oral diseases affect nearly 3.5 billion people, accounting for 4.6% of the healthcare expenditure. Common oral diseases include dental caries and periodontal disease, associated with biofilms formed by cariogenic pathogens. Epidemiological studies associate carbohydrates with these diseases due to  the sugars metabolized by cariogenic pathogens. This review focuses on dental caries and periodontal pathogens, quorum sensing, lectin-carbohydrate interactions, and various sugar molecules. Cariogenic sugars significantly influence biofilms by enhancing pathogen adhesion, viability, and gene expressions associated with biofilm formation. Moreover, lectin-carbohydrate interactions contribute to biofilm stability. Disrupting these interactions is a potential strategy for oral disease prevention. The use of nanoparticles, such as quantum dots, provides novel insights into lectin-sugar interactions and the development of inhibitors. Additionally, nanomaterials like calcium phosphate nanoparticles neutralize acids and inhibit microbial growth. This overview emphasizes understanding the relationships between oral diseases, microbial communities, and sugars to devise preventive and therapeutic strategies against oral diseases.


Assuntos
Cárie Dentária , Microbiota , Humanos , Açúcares , Cárie Dentária/prevenção & controle , Biofilmes , Lectinas
2.
Cell Biochem Funct ; 42(4): e4027, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38715184

RESUMO

Bioactive phytocompounds are crucial components in all plants. Since the time of traditional medicine, the utilization of plants has been grounded in the potential of these bioactive compounds to treat or manage specific illnesses. These natural bioactive compounds have sparked growing interest in employing medicinal plants for addressing various conditions, such as inflammatory diseases, diabetes, and cancer. This study focuses on assessing the qualitative phytochemical composition, antioxidant potential, and cytotoxic effects of blueberry (Vaccinium sect. Cyanococcus) extract using three different solvents, namely water, ethanol, and methanol. The extract exhibited notable antioxidant activities, as evidenced by DPPH and H2O2 free radical scavenging assays. The cell viability assay also demonstrated cell growth inhibition in A549 cells. Furthermore, nine specific phytocompounds sourced from existing literature were selected for molecular docking studies against CDK6 and, AMPK key protein kinases which enhance the cancer progression. The molecular docking results also revealed favorable binding scores, with a high score of -9.5 kcal/mol in CDK6 protein and a maximum score of AMPK with targets of -8.8 kcal/mol. The selected phytocompounds' pharmacodynamic properties such as ADMET also supported the study. Furthermore, rutin stated that pre-dominantly present in blueberry plants shows a potent cytotoxicity effect in A549 cells. Functional annotations by bioinformatic analysis for rutin also revealed the strong enrichment in the involvement of PI3K/AKT1/STAT, and p53 signaling pathways. Based on this analysis, the identified rutin and other compounds hold a promising anticancer activity. Overall, the comprehensive evaluation of both in vitro and in silico data suggests that the Vaccinium sect. Cyanococcus extract could serve as a valuable source of pharmaceutical agents and may prove effective in future therapeutic applications.


Assuntos
Mirtilos Azuis (Planta) , Proliferação de Células , Receptores ErbB , Estresse Oxidativo , Extratos Vegetais , Fator de Transcrição STAT3 , Transdução de Sinais , Proteína Supressora de Tumor p53 , Humanos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Mirtilos Azuis (Planta)/química , Estresse Oxidativo/efeitos dos fármacos , Fator de Transcrição STAT3/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Células A549 , Transdução de Sinais/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Receptores ErbB/metabolismo , Interleucina-6/metabolismo , Simulação de Acoplamento Molecular , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Sobrevivência Celular/efeitos dos fármacos , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/metabolismo , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Ensaios de Seleção de Medicamentos Antitumorais
3.
Curr Issues Mol Biol ; 45(2): 852-884, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36826001

RESUMO

The prevalence of obesity in contemporary society has brought attention to how serious it is all around the world. Obesity, a proinflammatory condition defined by hypertrophied adipocytes and immune cells that reside in adipose tissue, is characterized by elevated circulating levels of proinflammatory cytokines. The pro-inflammatory mediators trigger a number of inflammatory pathways and affect the phosphorylation of a number of insulin-signaling pathways in peripheral tissues. In this work, we pointed the outcome of the leaves of Carica papaya (C. papaya) on the inflammatory molecules by in vivo and in silico analysis in order to prove its mechanisms of action. Adipocytokines, antioxidant enzymes, gene and protein expression of pro-inflammatory signaling molecules (mTOR, TNF-α, IL-1ß, IL-6 and IKKß) by q-RT-PCR and immunohistochemistry, as well as histopathological analysis, in adipose tissues were carried out. C. papaya reinstated the levels of adipocytokines, antioxidant enzymes and mRNA levels of mTOR, TNF-α, IL-1ß, IL-6 and IKKß in the adipose tissues of type 2 diabetic rats. Molecular docking and dynamics simulation studies revealed that caffeic acid, transferulic acid and quercetin had the top hit rates against IKKß, TNF-α, IL-6, IL-1ß, and mTOR. This study concludes that C. papaya put back the altered effects in fatty tissue of type 2 diabetic rats by restoring the adipocytokines and the gene expression.

4.
Mol Divers ; 2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38145425

RESUMO

Breast cancer, a highly prevalent and fatal cancer that affects the female population worldwide, stands as a significant health challenge. Despite the abundance of chemotherapy drugs, the adverse side effects associated with them have initiated an investigation into natural plant-based compounds. Trigonelline, an alkaloid found in Trigonella foenum-graecum, was previously reported for its anticancer properties by the researchers. In this present study, we have identified the molecular targets of Trigonelline in breast cancer and predicted its drug-like properties and toxicity. By analyzing breast cancer targets from databases including TTD, TCGA, Gene cards, and Trigonelline targets obtained from CTD, we identified 14 specific targets of Trigonelline in the context of breast cancer. The protein-protein interaction (PPI) network of the 14 Trigonelline targets provided insights into the complex relationships between different genes and targets. Heatmap analysis demonstrated the expression patterns of these 14 genes at the protein and RNA levels in breast cancer cells and breast tissues. Notably, four genes, namely EGF, BAX, EGFR, and MTOR, were enriched in the breast cancer pathway. At the same time, PARP1, DDIT3, BAX, and TNF were associated with the apoptosis pathway according to KEGG pathway enrichment analyses. Molecular docking studies between Trigonelline and target proteins from the Protein Data Bank (PDB) revealed favorable binding affinity. Furthermore, mutation analysis of target genes within a dataset of 1918 samples from cBioPortal revealed the absence of mutations. Remarkably, Trigonelline also exhibited binding affinity towards two mutant proteins, and based on these findings, we predicted that Trigonelline could be utilized to target breast cancer genes and their mutants through network pharmacology. Additionally, this was supported by molecular dynamic simulation studies. As our study is preliminary, further validation through in vitro and in vivo studies is essential to confirm the efficacy of Trigonelline in breast cancer treatment.

5.
Crit Rev Food Sci Nutr ; 62(5): 1222-1229, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33107328

RESUMO

Breast cancer (BC) is a foremost type of cancer in women globally with an increased mortality rate in developing countries. Information regarding hereditary factors, lifestyle, work environment, food habits, and personal history could be useful in diagnosing breast cancer. Among such food habits, the reuse of edible oil for preparing food is a common practice in any developing country. The repeated heating of oils enhances the oxidative degradation of oil to produce polyaromatic hydrocarbons (PAH) which could disrupt the redox balance and generate reactive oxygen species. These reactive toxic intermediates can lead to BRCA1 mutations that are responsible for breast cancer. Mutations in DNA are the main cause for the conversion of proto-oncogenes into oncogenes which leads to change in expression and an increase in cell proliferation wherein a normal cell gets transformed into a malignant neoplastic cell. This review summarizes the possible mechanism involved in the induction of breast cancer due to repeated heating of edible.


Assuntos
Neoplasias da Mama , Óleos de Plantas , Proteína BRCA1/genética , Neoplasias da Mama/genética , Feminino , Humanos , Mutação , Espécies Reativas de Oxigênio
6.
Clin Exp Pharmacol Physiol ; 49(6): 613-623, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35275419

RESUMO

In recent years, oncotherapy has received considerable attention concerning plant polyphenols. Increasing evidence suggests that because of the efficiency of polyphenols, they may have anti-tumour effects in various cancers. However, their regulatory structures remain elusive. Long non-coding RNAs (lncRNAs) have been identified in the regulation of various forms of tumorigenesis and tumour development. Long non-coding RNAs have recently emerged as regulatory eukaryotic transcripts and therapeutic targets with important and diverse functions in health and diseases. LncRNAs may be associated with the initiation, development, and progression of cancer. This review summarizes the research on the modulatory effects of IncRNAs and their roles in mediating cellular processes. The mechanisms of action of polyphenols underlying their therapeutic effects on cancers are also discussed. Based on our review, polyphenols might facilitate a significant epigenetic modification as part of their tissue- and/or cell-related biological effects. This finding may be attributed to their interaction with cellular signalling pathways involved in chronic diseases. Certain lncRNAs might be the target of specific polyphenols, and some critical signalling processes involved in the intervention of cancers might mediate the therapeutic roles of polyphenols.


Assuntos
Neoplasias , RNA Longo não Codificante , Carcinogênese , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Polifenóis/farmacologia , Polifenóis/uso terapêutico , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA não Traduzido
7.
Molecules ; 27(17)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36080424

RESUMO

Heavy metals and metalloids like cadmium, arsenic, mercury, and lead are frequently found in the soil, water, food, and atmosphere; trace amounts can cause serious health issues to the human organism. These toxic trace elements (TTE) affect almost all the organs, mainly the heart, kidney, liver, lungs, and the nervous system, through increased free radical formation, DNA damage, lipid peroxidation, and protein sulfhydryl depletion. This work aims to advance our understanding of the mechanisms behind lipid accumulation via increased free fatty acid levels in circulation due to TTEs. The increased lipid level in the myocardium worsens the heart function. This dysregulation of the lipid metabolism leads to damage in the structure of the myocardium, inclusive fibrosis in cardiac tissue, myocyte apoptosis, and decreased contractility due to mitochondrial dysfunction. Additionally, it is discussed herein how exposure to cadmium decreases the heart rate, contractile tension, the conductivity of the atrioventricular node, and coronary flow rate. Arsenic may induce atherosclerosis by increasing platelet aggregation and reducing fibrinolysis, as exposure interferes with apolipoprotein (Apo) levels, resulting in the rise of the Apo-B/Apo-A1 ratio and an elevated risk of acute cardiovascular events. Concerning mercury and lead, these toxicants can cause hypertension, myocardial infarction, and carotid atherosclerosis, in association with the generation of free radicals and oxidative stress. This review offers a complete overview of the critical factors and biomarkers of lipid and TTE-induced cardiotoxicity useful for developing future protective interventions.


Assuntos
Arsênio , Mercúrio , Metais Pesados , Oligoelementos , Arsênio/toxicidade , Cádmio/toxicidade , Humanos , Lipídeos , Mercúrio/toxicidade , Metais Pesados/química , Oligoelementos/toxicidade
8.
Molecules ; 27(3)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35163879

RESUMO

Osteoporosis is a skeletal disease that is both systemic and silent characterized by an unbalanced activity of bone remodeling leading to bone loss. Rising evidences demonstrate that thyroid stimulating hormone (TSH) has an important role in the regulation on the metabolism of bone. However, TSH regulation on human osteoblast essential transcriptional factors has not been identified. Current study examined the role of TSH on human osteoblastic Runx2 expression and their functional genes by in vitro and in slico analysis. Human osteoblast like (HOS and SaoS-2) cells were cultured with DMEM and treated with hTSH at the concentration of 0.01 ng/mL and 10 ng/mL. After treatment, osteoblastic Runx2 and IGF-1R beta expression were studied using RT-PCR and western blot analysis. TSH treatment induced osteoblastic essential transcriptional factor, Runx2 in HOS and SaOS2 cells on 48 h duration and elevated the expression of IGF-IR ß gene and Protein in SaoS-2 cells. TSH also promotes Runx2 responsive genes such as ALP, Collagen and osteocalcin in SaOS2 cells on day 2 to day 14 of 10 ng/mL of treatment and favors' matrix mineralization matrix in these cells. In addition, TSH facilitated human osteoblastic cells to mineralize their matrix confirmed by day 21 of alizarin red calcium staining. In silico study was performed to check CREB and ELK1 interaction with Runx2. Results of in silico analysis showed that TSH mediated signalling molecules such as CREB and ELK1 showed interaction with Runx2 which involve in osteobalstic gene expression and differentiation. Present findings confirm that TSH promotes Runx2 expression, osteoblastic responsive genes and bone matrix formation.


Assuntos
Calcificação Fisiológica , Diferenciação Celular , Simulação por Computador , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Osteoblastos/fisiologia , Osteogênese , Tireotropina/farmacologia , Matriz Óssea/citologia , Matriz Óssea/fisiologia , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Humanos , Técnicas In Vitro , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos
9.
Molecules ; 27(5)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35268696

RESUMO

Natural products in the form of functional foods have become increasingly popular due to their protective effects against life-threatening diseases, low risk of adverse effects, affordability, and accessibility. Plant components such as phytosterol, in particular, have drawn a lot of press recently due to a link between their consumption and a modest incidence of global problems, such as Type 2 Diabetes mellitus (T2DM), cancer, and cardiovascular disease. In the management of diet-related metabolic diseases, such as T2DM and cardiovascular disorders, these plant-based functional foods and nutritional supplements have unquestionably led the market in terms of cost-effectiveness, therapeutic efficacy, and safety. Diabetes mellitus is a metabolic disorder categoriszed by high blood sugar and insulin resistance, which influence major metabolic organs, such as the liver, adipose tissue, and skeletal muscle. These chronic hyperglycemia fallouts result in decreased glucose consumption by body cells, increased fat mobilisation from fat storage cells, and protein depletion in human tissues, keeping the tissues in a state of crisis. In addition, functional foods such as phytosterols improve the body's healing process from these crises by promoting a proper physiological metabolism and cellular activities. They are plant-derived steroid molecules having structure and function similar to cholesterol, which is found in vegetables, grains, nuts, olive oil, wood pulp, legumes, cereals, and leaves, and are abundant in nature, along with phytosterol derivatives. The most copious phytosterols seen in the human diet are sitosterol, stigmasterol, and campesterol, which can be found in free form, as fatty acid/cinnamic acid esters or as glycosides processed by pancreatic enzymes. Accumulating evidence reveals that phytosterols and diets enriched with them can control glucose and lipid metabolism, as well as insulin resistance. Despite this, few studies on the advantages of sterol control in diabetes care have been published. As a basis, the primary objective of this review is to convey extensive updated information on the possibility of managing diabetes and associated complications with sterol-rich foods in molecular aspects.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Fitosteróis , Diabetes Mellitus Tipo 2/induzido quimicamente , Diabetes Mellitus Tipo 2/tratamento farmacológico , Dieta , Humanos , Fitosteróis/farmacologia , Fitosteróis/uso terapêutico , Esteróis
10.
Molecules ; 27(6)2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35335139

RESUMO

The wild-type SARS-CoV-2 has continuously evolved into several variants with increased transmissibility and virulence. The Delta variant which was initially identified in India created a devastating impact throughout the country during the second wave. While the efficacy of the existing vaccines against the latest SARS-CoV-2 variants remains unclear, extensive research is being carried out to develop potential antiviral drugs through approaches like in silico screening and drug-repurposing. This study aimed to conduct the docking-based virtual screening of 50 potential phytochemical compounds against a Spike glycoprotein of the wild-type and the Delta SARS-CoV-2 variant. Subsequently, molecular docking was performed for the five best compounds, such as Lupeol, Betulin, Hypericin, Corilagin, and Geraniin, along with synthetic controls. From the results obtained, it was evident that Lupeol exhibited a remarkable binding affinity towards the wild-type Spike protein (-8.54 kcal/mol), while Betulin showed significant binding interactions with the mutated Spike protein (-8.83 kcal/mol), respectively. The binding energy values of the selected plant compounds were slightly higher than that of the controls. Key hydrogen bonding and hydrophobic interactions of the resulting complexes were visualized, which explained their greater binding affinity against the target proteins-the Delta S protein of SARS-CoV-2, in particular. The lower RMSD, the RMSF values of the complexes and the ligands, Rg, H-bonds, and the binding free energies of the complexes together revealed the stability of the complexes and significant binding affinities of the ligands towards the target proteins. Our study suggests that Lupeol and Betulin could be considered as potential ligands for SARS-CoV-2 spike antagonists. Further experimental validations might provide new insights for the possible antiviral therapeutic interventions of the identified lead compounds and their analogs against COVID-19 infection.


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , Antivirais/farmacologia , Humanos , Simulação de Acoplamento Molecular , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética
11.
J Contemp Dent Pract ; 23(1): 1-2, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35656649

RESUMO

Dear Editor, DNA is a double-stranded structure present inside the nucleus that carries all the inherited genomic information. Dental tissues are excellent sources of DNA as they show resistance to chemical and physical conditions.1 Dental enamel can withstand adverse conditions like humidity, microbial action, and high temperatures, thus preserving the enclosed DNA.2 DNA can be obtained from odontoblastic processes of dentin, cellular cementum, neurovascular tissues of the pulp, radicular canals, periodontal ligament, and alveolar bone.3 A high concentration of DNA is found in the root body, then in the root tip, coronal body, and coronal tip. The pulp is rich in vascularity, which makes it a rich source of DNA. Cementocytes from cellular cementum are one of the DNA sources that are present within the extracellular matrix.4 In addition, the odontoblastic cell processes are rich in mitochondrial DNA (mtDNA).


Assuntos
Cemento Dentário , Polpa Dentária , DNA , Ligamento Periodontal
12.
J Contemp Dent Pract ; 23(4): 467-477, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35945843

RESUMO

AIM: This review aims to explore the importance of silk hydrogel and its potential in tissue engineering (TE). BACKGROUND: Tissue engineering is a procedure that incorporates cells into the scaffold materials with suitable growth factors to regenerate injured tissue. For tissue formation in TE, the scaffold material plays a key role. Different forms of silk fibroin (SF), such as films, mats, hydrogels, and sponges, can be easily manufactured when SF is disintegrated into an aqueous solution. High precision procedures such as micropatterning and bioprinting of SF-based scaffolds have been used for enhanced fabrication. REVIEW RESULTS: In this narrative review, SF physicochemical and mechanical properties have been presented. We have also discussed SF fabrication techniques like electrospinning, spin coating, freeze-drying, and physiochemical cross-linking. The application of SF-based scaffolds for skeletal, tissue, joint, muscle, epidermal, tissue repair, and tympanic membrane regeneration has also been addressed. CONCLUSION: SF has excellent mechanical properties, tunability, biodegradability, biocompatibility, and bioresorbability. CLINICAL SIGNIFICANCE: Silk hydrogels are an ideal scaffold matrix material that will significantly impact tissue engineering applications, given the rapid scientific advancements in this field.


Assuntos
Fibroínas , Engenharia Tecidual , Materiais Biocompatíveis/química , Fibroínas/química , Hidrogéis/química , Seda , Engenharia Tecidual/métodos , Alicerces Teciduais/química
13.
J Biochem Mol Toxicol ; 35(4): e22700, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33421271

RESUMO

Nasopharyngeal cancer is a malignancy developing from the nasopharynx epithelium due to smoking and nitrosamine-containing foods. Nasopharyngeal cancer is highly endemic to Southeast Asia. Eugenol and piperine have shown many anticancer activities on numerous cancer types, like colon, lung, liver, and breast cancer. In this study, we amalgamated eugenol and piperine loaded with a polyhydroxy butyrate/polyethylene glycol nanocomposite (Eu-Pi/PHB-PEG-NC) for better anticancer results against nasopharyngeal cancer (C666-1) cells. In the current study, nasopharyngeal cancer cell lines C666-1 were utilized to appraise the cytotoxic potential of Eug-Pip-PEG-NC on cell propagation, programmed cell death, and relocation. Eu-Pi/PHB-PEG-NC inhibits cellular proliferation on C666-1 cells in a dose-dependent manner, and when compared with 20 µg/ml, 15 µg/ml of loaded mixture evidently restrained the passage aptitude of C666-1 cells, this was attended with a downregulated expression of mitochondrial membrane potential. Treatment with 15 µg/ml Eu-Pi/PHB-PEG-NC suggestively amplified cell apoptosis in the C666-1 cells. Furthermore, its cleaved caspase-3, 8, and 9 and Bax gene expression was augmented and Bcl-2 gene expression was diminished after Eu-Pi/PHB-PEG-NC treatment. Additionally, our data established that the collective effect of Eu-Pi/PHB-PEG-NC loaded micelles inhibited the expansion of C666-1 cells augmented apoptosis connected with the intrusion of PI3K/Akt/mTOR signaling pathway.


Assuntos
Alcaloides , Apoptose/efeitos dos fármacos , Benzodioxóis , Portadores de Fármacos , Eugenol , Nanocompostos , Neoplasias Nasofaríngeas , Piperidinas , Alcamidas Poli-Insaturadas , Transdução de Sinais/efeitos dos fármacos , Alcaloides/química , Alcaloides/farmacologia , Benzodioxóis/química , Benzodioxóis/farmacologia , Linhagem Celular Tumoral , Portadores de Fármacos/química , Portadores de Fármacos/farmacologia , Elafina/metabolismo , Eugenol/química , Eugenol/farmacologia , Humanos , Nanocompostos/química , Nanocompostos/uso terapêutico , Neoplasias Nasofaríngeas/tratamento farmacológico , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/patologia , Piperidinas/química , Piperidinas/farmacologia , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Poli-Hidroxialcanoatos/química , Poli-Hidroxialcanoatos/farmacologia , Alcamidas Poli-Insaturadas/química , Alcamidas Poli-Insaturadas/farmacologia , Proibitinas , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo
14.
J Biochem Mol Toxicol ; 35(6): 1-10, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33724660

RESUMO

Among cancers, leukemia is a multistep progression that involves genetic modifications of normal hematopoietic progenitor cells to cancerous cells. In recent times, leukemia cases and their mortality rate have increased rapidly. Therefore, the immense need for a therapeutic approach is crucial that can control this type of cancer. Phyllanthin is a lignan compound constituent from the Phyllanthus species and has numerous beneficial effects as a dietary component. The present study aims to determine the impact of phyllanthin on the MOLT-4 cytotoxic effect. MOLT-4 cells and MS-5 cells were cultured at different concentrations of phyllanthin (5, 10, 25, 50, 75, and 100 µM/ml), and the viability was assessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method. The level of reactive oxygen species, the membrane potential of mitochondria, apoptosis by 2',7'-dichlorofluorescin-diacetate (DCF-DA), rhodamine, acridine orange (AO)/ethidium bromide (EB), 4',6-diamidino-2-phenylindole (DAPI)/propidium iodide (PI) staining, gene expression of signaling molecules, and protein levels were assessed by reverse-transcription polymerase chain reaction and western blot analysis. Phyllanthin did not show toxicity toward MS-5 cells and significantly decreased the cell viability of MOLT-4 cells with an IC50 value of 25 µM/ml. Also, phyllanthin induced the production of reactive oxygen species and led to the loss of mitochondrial membrane potential. AO/EB and DAPI/PI staining fluorescent image confirmed the induction of apoptosis by phyllanthin treatment. The messenger RNA (mRNA) expression of cell cycle regulator cyclin D1, antiapoptotic gene Bcl-2, NF-κB, and TNF-α decreased, but the proapoptotic Bax mRNA expression was increased. The phosphorylated protein levels of p-PI3K1/2, p-ERK1/2, and p-AKT were decreased, whereas the levels of p-p38 and p-JNKT1/2 increased. Our results confirmed that phyllanthin inhibits the MOLT-4 cells, increases apoptosis, and inhibits MOLT-4 migration and cell invasion. Therefore, phyllanthin can be used as a potential target for leukemia treatment.


Assuntos
Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Leucemia/metabolismo , Lignanas/farmacologia , MAP Quinase Quinase 4/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Leucemia/tratamento farmacológico , Leucemia/patologia
15.
J Biochem Mol Toxicol ; 35(5): e22733, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33605003

RESUMO

The untreated systemic chronic inflammation leads to autoimmune diseases, hyperglycemia, cardiovascular diseases, type 2 diabetes, hypertension, osteoporosis, and so on. Phytochemicals effectively inhibit the inflammation, and numerous studies have proved that the phytocomponents possess anti-inflammatory property via inhibiting the cyclooxygenase and lipoxygenase signaling pathways. Rhaponticin is one such phytochemical obtained from the perennial plant Rheum rhaponticum L. belonging to Polygonaceae family. We assessed the anti-inflammatory potency of rhaponticin in endothelial cells induced with lipopolysaccharides (LPS). Four different endothelial cells induced with LPS were treated with rhaponticin and assessed for the nitric oxide generation. The cytotoxic potency of rhaponticin was evaluated in endothelial cells using the 3-(4,5-dimethylthizaol-2yl)-2,5-diphenyl tetrazolium bromide assay. The tumor necrosis factor-α (TNF-α) synthesis was quantified using the commercially available assay kit. The inflammatory signaling protein gene expression of TNF-α, inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX2), and interleukin-1ß (IL-1ß) was analyzed with quantitative polymerase chain reaction (PCR) analysis. The gene expression of NADPH oxidase (NOX) cytoplasmic catalytic subunits gp91phox , p47phox , and p22phox was assessed with real-time PCR analysis. Finally, to confirm the anti-inflammatory potency of rhaponticin, the nuclear factor kappa B (NFκB) and mitogen-activated protein kinase (MAPK) signaling protein expression was analyzed with immunoblotting analysis. Rhaponticin treatment significantly decreased the levels of nitric oxide and TNF-α synthesis in LPS-induced endothelial cells. It significantly decreased the gene expression of inflammatory proteins and NOX signaling protein. The protein expression of NFκB and MAPK signaling proteins was drastically decreased in rhaponticin-treated endothelial cells induced with LPS. Overall, our results confirm that rhaponticin effectively inhibited the inflammation triggered by LPS in endothelial cells via downregulating iNOS, COX2, and NFκB and MAPK signaling pathways.


Assuntos
Anti-Inflamatórios/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Lipopolissacarídeos/toxicidade , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , NF-kappa B/metabolismo , Estilbenos/farmacologia , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos
16.
J Biochem Mol Toxicol ; 35(9): e22857, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34338399

RESUMO

Gliomas are a type of brain cancer that occurs in the supporting glial cells of the brain. It is highly malignant and accounts for 80% of brain tumors with high mortality and morbidity. Phytomedicines are potent alternatives for allopathic drugs which cause side effects. They have been used from ancient times by traditional Chinese, Ayurveda, and Siddha medicine. Arubtin is a glycoside phytochemical extracted from plants and belongs to the family of Ericaceae. Arbutin possesses various pharmacological properties such as anti-inflammatory, antioxidant, antitumor, and so on. Hence in the present study, we analyzed the anticancer potency of arbutin against rat C6 glioma cells. Rat C6 glioma cells were procured from American Type Culture Collection and the cells were cultured in Roswell Park Memorial Institute-1640 medium. To assess the cytotoxicity effect of the arbutin against C6 glioma cells, an 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide test was performed with different doses from 10 to 60 µM. Arbutin effectively induced apoptosis in the cells and the IC50 dose was obtained at 30 µM. For further studies, we selected the 30 µM IC50 dose and a higher dose of 40 µM. Reactive oxygen species (ROS) generated were analyzed with DCFDA/H2DCFDA stain and the destruction of mitochondrial membrane permeability which is the initiator of apoptosis was analyzed with a cationic stain Rhodamine 123. Dual staining with acridine orange and ethidium bromide was performed to assess the viable and dead cells. Cell adhesion properties of glioma cells were analyzed with Matrigel assay. The apoptotic, inflammatory, and phosphoinositide 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) signaling molecules were analyzed with quantitative polymerase chain reaction (qPCR) analysis to confirm the anticancer effect of arbutin. Arbutin generated excessive ROS and disrupted the mitochondrial membrane, which induced apoptosis in cells, it also inhibited the cell adhesion property of C6 glioma cells. qPCR analysis clearly indicates arbutin increases the apoptotic genes and decreased the inflammatory and PI3K/mTOR signaling molecules. Overall, our results authentically confirm that arbutin can be a potent alternative for treating glioma.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Arbutina/farmacologia , Glioma , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Animais , Linhagem Celular Tumoral , Glioma/tratamento farmacológico , Glioma/metabolismo , Glioma/patologia , Ratos
17.
BMC Womens Health ; 21(1): 65, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33579263

RESUMO

BACKGROUND: Despite the fact that cervical cancer is preventable and curable in the early stages, it still remains to be a major public health problem in India. This study was conducted to assess the knowledge and awareness regarding the Human Papilloma Virus (HPV) vaccination among health care professionals working in a tertiary care hospital in urban India. METHODS: To this aim, we conducted a cross-sectional study among 318 health care professionals working in tertiary hospitals across Chennai, Tamil Nadu, India. Our research group designed a structured questionnaire with 31 items to assess the knowledge and attitudes on cervical cancer, its prevention, and HPV vaccination. RESULTS: Among the 318 respondents, 90.6% were aware of cervical cancer, 83.3% were aware that PAP (Papanicolaou) smear test detects cervical cancer, and 86.2% of the respondents knew that HPV causes cervical cancer. 29.2% of the eligible respondents underwent the screening against cervical cancer, and 19.8% of the study participants were vaccinated for HPV. Only 34.9% know that the HPV vaccine could be given to boys. The most common reason for not being vaccinated against HPV was the lack of awareness. In our study, 77.2% of the respondents were willing to be vaccinated and recommend HPV vaccination to their family members. CONCLUSION: From this study, it was evident that there is a lack of awareness about HPV vaccination and its importance in preventing cervical cancer among healthcare professionals. Our finding clearly establishes the need to devise intervention programs to promote vaccination against HPV and periodical screening for cervical cancer among healthcare professionals.


Assuntos
Infecções por Papillomavirus , Vacinas contra Papillomavirus , Neoplasias do Colo do Útero , Estudos Transversais , Feminino , Conhecimentos, Atitudes e Prática em Saúde , Pessoal de Saúde , Humanos , Índia , Masculino , Infecções por Papillomavirus/prevenção & controle , Vacinas contra Papillomavirus/uso terapêutico , Inquéritos e Questionários , Neoplasias do Colo do Útero/prevenção & controle , Vacinação
18.
Environ Toxicol ; 36(6): 1011-1020, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33522684

RESUMO

This work focuses on evaluating the therapeutic ability of betalain and its causal mechanisms in NSCLC both in vivo and in vitro. The experimental results demonstrated that betalain was able to reduce the viability of A549 cells dose dependently with undetectable toxicity toward normal human cells. Betalain also augmented the apoptotic cells of A549 and cell cycle arrest which was evidenced via increased in level of p53/p21 and decreasing levels of cyclin-D1 complex. Moreover, betalain also reduced the levels of p-PI3K, p-Akt, and mammalian target of rapamycin significantly, justifying the pro-apoptotic effect on A549 cells. The in vivo anticancer activity of betalain was determined further in nude mice injected with A549 cells. Xenograft in vivo experiments confirmed betalain administration of ameliorates the expression of pro-inflammatory cytokines, tumor markers with reduced toxic effect. Accordingly, this combined study provides significant insight on betalain as a therapeutic agent.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Apoptose , Betalaínas , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Proliferação de Células , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Camundongos , Camundongos Nus , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
19.
Int J Mol Sci ; 22(6)2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33806909

RESUMO

Kirenol (KRL) is a biologically active substance extracted from Herba Siegesbeckiae. This natural type of diterpenoid has been widely adopted for its important anti-inflammatory and anti-rheumatic properties. Despite several studies claiming the benefits of KRL, its cardiac effects have not yet been clarified. Cardiotoxicity remains a key concern associated with the long-term administration of doxorubicin (DOX). The generation of reactive oxygen species (ROS) causes oxidative stress, significantly contributing to DOX-induced cardiac damage. The purpose of the current study is to investigate the cardio-protective effects of KRL against apoptosis in H9c2 cells induced by DOX. The analysis of cellular apoptosis was performed using the terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) staining assay and measuring the modulation in the expression levels of proteins involved in apoptosis and Nrf2 signaling, the oxidative stress markers. Furthermore, Western blotting was used to determine cell survival. KRL treatment, with Nrf2 upregulation and activation, accompanied by activation of PI3K/AKT, could prevent the administration of DOX to induce cardiac oxidative stress, remodeling, and other effects. Additionally, the diterpenoid enhanced the activation of Bcl2 and Bcl-xL, while suppressing apoptosis marker proteins. As a result, KRL is considered a potential agent against hypertrophy resulting from cardiac deterioration. The study results show that KRL not only activates the IGF-IR-dependent p-PI3K/p-AKT and Nrf2 signaling pathway, but also suppresses caspase-dependent apoptosis.


Assuntos
Cardiotônicos/farmacologia , Diterpenos/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Citoesqueleto/metabolismo , Diterpenos/química , Doxorrubicina/efeitos adversos , Humanos , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Mioblastos Cardíacos/efeitos dos fármacos , Mioblastos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Peptídeos Natriuréticos/metabolismo , Fosforilação , Transporte Proteico
20.
Int J Mol Sci ; 22(8)2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33923922

RESUMO

Doxorubicin increases endothelial permeability, hence increasing cardiomyocytes' exposure to doxorubicin (DOX) and exposing myocytes to more immediate damage. Reactive oxygen species are major effector molecules of doxorubicin's activity. Mangiferin (MGN) is a xanthone derivative that consists of C-glucosylxanthone with additional antioxidant properties. This particular study assessed the effects of MGN on DOX-induced cytotoxicity in human umbilical vein endothelial cells' (HUVECs') signaling networks. Mechanistically, MGN dramatically elevated Nrf2 expression at both the messenger RNA and protein levels through the upregulation of the PI3K/AKT pathway, leading to an increase in Nrf2-downstream genes. Cell apoptosis was assessed with a caspase-3 activity assay, transferase-mediated dUTP-fluorescein nick end labeling (TUNEL) staining was performed to assess DNA fragmentation, and protein expression was determined by Western blot analysis. DOX markedly increased the generation of reactive oxygen species, PARP, caspase-3, and TUNEL-positive cell numbers, but reduced the expression of Bcl-2 and antioxidants' intracellular concentrations. These were effectively antagonized with MGN (20 µM), which led to HUVECs being protected against DOX-induced apoptosis, partly through the PI3K/AKT-mediated NRF2/HO-1 signaling pathway, which could theoretically protect the vessels from severe DOX toxicity.


Assuntos
Doxorrubicina/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Xantonas/farmacologia , Antioxidantes/metabolismo , Apoptose/efeitos dos fármacos , Western Blotting , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Fragmentação do DNA/efeitos dos fármacos , Imunofluorescência , Humanos , Marcação In Situ das Extremidades Cortadas , Fator 2 Relacionado a NF-E2/genética , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA