Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
1.
J Biol Chem ; 299(8): 105036, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37442232

RESUMO

Arsenic contamination of groundwater is among one of the biggest health threats affecting millions of people in the world. There is an urgent need for efficient arsenic biosensors where the use of arsenic metabolizing enzymes can be explored. In this work, we have solved four crystal structures of arsenite oxidase (Aio) in complex with arsenic and antimony oxyanions and the structures determined correspond to intermediate states of the enzymatic mechanism. These structural data were complemented with density-functional theory calculations providing a unique view of the molybdenum active site at different time points that, together with mutagenesis data, enabled to clarify the enzymatic mechanism and the molecular determinants for the oxidation of As(III) to the less toxic As(V) species.


Assuntos
Arsênio , Arsenitos , Humanos , Antimônio , Oxirredução
2.
Chemistry ; 30(4): e202302455, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-37814821

RESUMO

Efficient hydrogenations of terminal alkenes with molecular hydrogen catalyzed by well-defined bench stable Mn(I) complexes containing an N-heterocyclic carbene-based PCP pincer ligand are described. These reactions are environmentally benign and atom economic, implementing an inexpensive, earth abundant non-precious metal catalyst. A range of aromatic and aliphatic alkenes were efficiently converted into alkanes in good to excellent yields. The hydrogenation proceeds at 100 °C with catalyst loadings of 0.25-0.5 mol %, 2.5-5 mol % base (KOt Bu) and a hydrogen pressure of 20 bar. Mechanistic insight into the catalytic reaction is provided by means of DFT calculations.

3.
J Org Chem ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39025478

RESUMO

Limonene undergoes a regioselective Pd(II)-catalyzed C(sp2)-H/C(sp2)-H coupling with acrylic acid esters and amides, α,ß-unsaturated ketones, styrenes, and allyl acetate, affording novel 1,3-dienes. DFT computations gave results in accord with the experimental results and allowed for the formulation of a plausible mechanism. The postfunctionalization of one of the coupled products was achieved via a large-scale Sonogashira reaction conducted under micellar catalysis.

4.
Inorg Chem ; 63(18): 8244-8256, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38656156

RESUMO

The borane-functionalized (BR2) bis(3,5-dimethylpyrazolyl)methane (LH) ligands 1a (BR2: 9-borabicyclo[3.3.1]nonane or 9-BBN), 1b (BR2: BCy2), and 1c (BR2: B(C6F5)2) were synthesized by the allylation-hydroboration of LH. Metalation of 1a,b with ZnCl2 yielded the heteroscorpionate dichloride complexes [(1a,b)ZnCl2] 3a,b. The reaction of 1a with ZnEt2 led to the formation of the zwitterionic complex [Et(1a)ZnEt(THF)] 5. The reaction of complex 3a with two equivalents of KHBEt3 under a carbon dioxide (CO2) atmosphere gave rise to the formation of the dimeric bis(formate) complex [(1a)Zn(OCHO)2]2 8, in which its borane moieties intermolecularly stabilize the formate ligands of opposite metal centers. The allylated precursor Lallyl and its zinc dichloride, diethyl and bis(formate) complexes [(Lallyl)ZnCl2] 2, [(Lallyl)ZnEt2] 4, and [(Lallyl)Zn(OCHO)2] 7 were also isolated. The catalyst systems composed of 1 mol % of 3a or 3b and two equivalents of KHBEt3 hydroborated CO2 at 1 bar with pinacolborane (HBPin) to the methanol-level product H3COBPin (and PinBOBPin) in yields of 42 or 86%, respectively. The catalyst systems using the unfunctionalized complex [(LH)ZnCl2] 6 and KHBEt3 or KHBEt3/nOctBR2 (BR2: 9-BBN or BCy2) hydroborated CO2 to H3COBPin but in 2.5- to 6-fold lower activities than those exhibited by 3a,b/KHBEt3. The hydroboration of CO2 using 8 as a catalyst led to yields of 39-43%, comparable to those obtained with 3a/KHBEt3. The results confirmed that the catalytic intermediates benefit from the incorporated boranes' intra- or intermolecular stabilizations.

5.
Molecules ; 28(24)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38138486

RESUMO

[(Bn2Cyclam)Y(N(SiMe3)2)] was prepared by reaction of H2Bn2Cyclam with Y[N(SiMe3)2]3. The protonation of the macrocycle ligand in [(Bn2Cyclam)Y(N(SiMe3)2)] is observed upon reaction with [HNMe3][BPh4] leading to the formation of [(HBn2Cyclam)Y(N(SiMe3)2)][BPh4]. DFT analysis of [(Bn2Cyclam)Y(N(SiMe3)2)] showed that the HOMO is located on the anionic nitrogen atoms of the cyclam ring indicating that protonation follows orbital control. Addition of H2Bn2Cyclam and H2(3,5-tBu2Bn)2Cyclam to a 1:3 mixture of YCl3 and LiCH2SiMe3 in THF resulted in the formation of [((C6H4CH2)BnCyclam)Y(THF)(µ-Cl)Li(THF)2] and [Y{(η3-3,5-tBu2Bn)2Cyclam}Li(THF)], respectively. The reaction of H23,5-tBu2Bn2Cyclam with Y(CH2SiMe3)3(THF)2 was studied and monitored by a temperature variation NMR experiment revealing the formation of [(3,5-tBu2Bn2Cyclam)Y(CH2SiMe3)]. Preliminary catalytic assays have shown that [Y{(η3-3,5-tBu2Bn)2Cyclam}Li(THF)] is a very efficient catalyst for the intramolecular hydroamination of 2,2-diphenyl-pent-4-enylamine.

6.
Chemistry ; 28(67): e202202377, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36245264

RESUMO

N-terminal Cys modification has been intensively studied to produce homogeneous bioconjugates essentially through two modes of reaction: reversible modification with the equilibrium shifted towards the formation of the desired conjugate or stable and irreversible conjugates. Herein, we report a new method of N-terminal cysteine modification using O-salicylaldehyde esters (OSAEs) through fast conjugation and irreversible deconjugation. These reagents can rapidly react with N-terminal Cys at low-micromolar concentration to form thiazolidines with subsequent hydrolysis of the ester moiety to the phenolic derivative. These phenolic thiazolidines can be hydrolyzed at acidic pH (≈4.5) to recover the intact N-terminal Cys. Bioconjugation reactions using OSAEs offer controlled reversibility to as act as a protecting group for N-terminal cysteines, allowing the modification of in-chain residues without perturbing the N-terminal Cys, which can then be deprotected and used as a conjugation site.


Assuntos
Aldeídos , Cisteína , Cisteína/química , Tiazolidinas , Ésteres/química
7.
J Org Chem ; 87(7): 4640-4648, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35290058

RESUMO

A new Ru3(CO)12-catalyzed directed alkenylation of 2-carboxaldimine-heterocyclopentadienes has been accomplished. This process allows coupling of furan, pyrrole, indole, and thiophene 2-carboxaldimines with electron-poor alkenes such as acrylates, vinylsulfones, and styrenes. This regio- and chemoselective oxidative C-H coupling does not require the presence of an additional sacrificial oxidant. Density functional theory calculations allowed us to propose a mechanism and unveiled the nature of the H2 acceptor.

8.
Inorg Chem ; 61(2): 1195-1206, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-34962785

RESUMO

A well-defined and very active single-component manganese(II) catalyst system for the hydrosilylation of aldehydes and ketones is presented. First, the reaction of 5-(2,4,6-iPr3C6H2)-2-[N-(2,6-iPr2C6H3)formimino]pyrrolyl potassium (KL) and [MnCl2(Py)2] afforded the binuclear 2-iminopyrrolyl manganese(II) pyridine chloride complex [Mn2{κ2N,N'-5-(2,4,6-iPr3C6H2)-NC4H2-2-C(H)═N(2,6-iPr2C6H3)}2(Py)2(µ-Cl)2] 1. Subsequently, the alkylation reaction of complex 1 with LiCH2SiMe3 afforded the respective (trimethylsilyl)methyl-Mn(II) complex [Mn{κ2N,N'-5-(2,4,6-iPr3C6H2)-NC4H2-2-C(H)═N(2,6-iPr2C6H3)}(Py)CH2SiMe3] 2 in a good yield. Complexes 1 and 2 were characterized by elemental analysis, 1H NMR spectroscopy, Evans' method, FTIR spectroscopy, and single-crystal X-ray diffraction. While the crystal structure of complex 1 has been identified as a binuclear entity, in which the Mn(II) centers present pentacoordinate coordination spheres, that of complex 2 corresponds to a monomer with a distorted tetrahedral coordination geometry. Complex 2 proved to be a very active precatalyst for the atom-economic hydrosilylation of several aldehydes and ketones under very mild conditions, with a maximum turnover frequency of 95 min-1, via a silyl-Mn(II) mechanistic route, as asserted by a combination of experimental and theoretical efforts, the respective silanes were cleanly converted to the respective alcoholic products in high yields.

9.
J Am Chem Soc ; 143(42): 17825-17832, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34644064

RESUMO

We report on an additive-free Mn(I)-catalyzed dehydrogenative silylation of terminal alkenes. The most active precatalyst is the bench-stable alkyl bisphosphine Mn(I) complex fac-[Mn(dippe)(CO)3(CH2CH2CH3)]. The catalytic process is initiated by migratory insertion of a CO ligand into the Mn-alkyl bond to yield an acyl intermediate which undergoes rapid Si-H bond cleavage of the silane HSiR3 forming the active 16e- Mn(I) silyl catalyst [Mn(dippe)(CO)2(SiR3)] together with liberated butanal. A broad variety of aromatic and aliphatic alkenes was efficiently and selectively converted into E-vinylsilanes and allylsilanes, respectively, at room temperature. Mechanistic insights are provided based on experimental data and DFT calculations revealing that two parallel reaction pathways are operative: an acceptorless reaction pathway involving dihydrogen release and a pathway requiring an alkene as sacrificial hydrogen acceptor.

10.
Angew Chem Int Ed Engl ; 60(46): 24488-24492, 2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34435424

RESUMO

A MnI -catalyzed hydroboration of terminal alkenes and a 1,2-diboration of terminal alkynes with pinacolborane (HBPin) is described. For alkenes, anti-Markovnikov hydroboration takes place; for alkynes the reaction proceeds with excellent trans-1,2-selectivity. The most active pre-catalyst is bench-stable alkyl bisphosphine MnI complex fac-[Mn(dippe)(CO)3 (CH2 CH2 CH3 )]. The catalytic process is initiated by migratory insertion of a CO ligand into the Mn-alkyl bond to yield an acyl intermediate, which undergoes B-H bond cleavage of HBPin (for alkenes) and rapid C-H bond cleavage (for alkynes), forming the active MnI boryl and acetylide catalysts [Mn(dippe)(CO)2 (BPin)] and [Mn(dippe)(CO)2 (C≡CR)], respectively. A broad variety of aromatic and aliphatic alkenes and alkynes was efficiently and selectively borylated. Mechanistic insights are provided based on experimental data and DFT calculations revealing that an acceptorless reaction is operating involving dihydrogen release.

11.
Angew Chem Int Ed Engl ; 60(49): 25914-25921, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34741376

RESUMO

Antibody-drug conjugates (ADCs) are a new class of therapeutics that combine the lethality of potent cytotoxic drugs with the targeting ability of antibodies to selectively deliver drugs to cancer cells. In this study we show for the first time the synthesis of a reactive-oxygen-species (ROS)-responsive ADC (VL-DAB31-SN-38) that is highly selective and cytotoxic to B-cell lymphoma (CLBL-1 cell line, IC50 value of 54.1 nM). The synthesis of this ADC was possible due to the discovery that diazaborines (DABs) are a very effective ROS-responsive unit that are also very stable in buffer and in plasma. DFT calculations performed on this system revealed a favorable energetic profile (ΔGR=-74.3 kcal mol-1 ) similar to the oxidation mechanism of aromatic boronic acids. DABs' very fast formation rate and modularity enabled the construction of different ROS-responsive linkers featuring self-immolative modules, bioorthogonal functions, and bioconjugation handles. These structures were used in the site-selective functionalization of a VL antibody domain and in the construction of the homogeneous ADC.


Assuntos
Antineoplásicos/farmacologia , Compostos de Boro/farmacologia , Imunoconjugados/farmacologia , Linfoma de Células B/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Antineoplásicos/química , Antineoplásicos/metabolismo , Compostos de Boro/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Imunoconjugados/química , Imunoconjugados/metabolismo , Linfoma de Células B/metabolismo , Linfoma de Células B/patologia , Estrutura Molecular
12.
Chemistry ; 26(66): 15226-15231, 2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-32627856

RESUMO

Boronic acids (BAs) are a promising bioconjugation function to design dynamic materials as they can establish reversible covalent bonds with oxygen/nitrogen nucleophiles that respond to different pH, ROS, carbohydrates and glutathione levels. However, the dynamic nature of these bonds also limits the control over the stability and site-selectivity of the bioconjugation, which ultimately leads to heterogeneous conjugates with poor stability under physiological conditions. Here we disclose a new strategy to install BAs on peptide chains. In this study, a "boron hot spot" based on the 3-hydroxyquinolin-2(1H)-one scaffold was developed and upon installation on a peptide N-terminal cysteine, enables the site-selective formation of iminoboronates with 2-formyl-phenyl boronic acids (Ka of 58128±2 m-1 ). The reaction is selective in the presence of competing lysine ϵ-amino groups, and the resulting iminoboronates, displayed improved stability in buffers solutions and a cleavable profile in the presence of glutathione. Once developed, the methodology was used to prepare cleavable fluorescent conjugates with a laminin fragment, which enabled the validation of the 67LR receptor as a target to deliver cargo to cancer HT29 cells.


Assuntos
Boro , Peptídeos , Cisteína/química , Glutationa/química , Humanos , Lisina/química
13.
Tetrahedron ; 76(51): 131373, 2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-32836479

RESUMO

The Michael addition step and the following C5 isomerization in Hayashi's synthesis of Oseltamivir was studied by means of a DFT mechanistic study. These steps are crucial for the viability of the process where the formation of a single stereoisomer is required. The results indicate that the addition reaction is under thermodynamic and not kinetic control and that the key factor determining the reaction stereoselectivity are the stereochemical constraints imposed by all substituents in the cyclohexane ring. The DFT results indicate that cyclohexylthiol should behave similarly to p-toluylthiol, the one actually employed, and tert-butylthiol should increase the ratio between isomers favoring the desired S configuration of the C5 atom. This work shows that DFT studies can be useful in the selection of a reactant to improve stereoselectivity of a chemical step.

14.
J Am Chem Soc ; 141(43): 17452-17458, 2019 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-31589434

RESUMO

The bench-stable cationic bis(σ-B-H) aminoborane complex [Fe(PNPNMe-iPr)(H)(η2-H2B = NMe2)]+ (2) efficiently catalyzes the semihydrogenation of internal alkynes, 1,3-diynes and 1,3-enynes. Moreover, selective incorporation of deuterium was achieved in the case of 1,3-diynes and 1,3-enynes. The catalytic reaction takes place under mild conditions (25 °C, 4-5 bar H2 or D2) in 1 h, and alkenes were obtained with high Z-selectivity for a broad scope of substrates. Mechanistic insight into the catalytic reaction, explaining also the stereo- and chemoselectivity, is provided by means of DFT calculations. Intermediates featuring a bisdihydrogen moiety [Fe(PNPNMe-iPr)(η2-H2)2]+ are found to play a key role. Experimental support for such species was unequivocally provided by the fact that [Fe(PNPNMe-iPr)(H)(η2-H2)2]+ (3) exhibited the same catalytic activity as 2. The novel cationic bisdihydrogen complex 3 was obtained by protonolysis of [Fe(PNPNMe-iPr)(H)(η2-AlH4)]2 (1) with an excess of nonafluoro-tert-butyl alcohol.

15.
Chemistry ; 25(34): 8061-8069, 2019 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-30908757

RESUMO

The reactivity of ZnII dialkyl species ZnMe2 with a cyclic(alkyl)(amino)carbene, 1-[2,6-bis(1-methylethyl)phenyl]-3,3,5,5-tetramethyl-2-pyrrolidinylidene (CAAC, 1), was studied and extended to the preparation of robust CAAC-supported ZnII Lewis acidic organocations. CAAC adduct of ZnMe2 (2), formed from a 1:1 mixture of 1 and ZnMe2 , is unstable at room temperature and readily undergoes a CAAC carbene insertion into the Zn-Me bond to produce the ZnX2 -type species (CAAC-Me)ZnMe (3), a reactivity further supported by DFT calculations. Despite its limited stability, adduct 2 was cleanly ionized to robust two-coordinate (CAAC)ZnMe+ cation (5+ ) and derived into (CAAC)ZnC6 F5 + (7+ ), both isolated as B(C6 F5 )4 - salts, showing the ability of CAAC for the stabilization of reactive [ZnMe]+ and [ZnC6 F5 ]+ moieties. Due to the lability of the CAAC-ZnMe2 bond, the formation of bis(CAAC) adduct (CAAC)2 ZnMe+ cation (6+ ) was also observed and the corresponding salt [6][B(C6 F5 )4 ] was structurally characterized. As estimated from experimental and calculations data, cations 5+ and 7+ are highly Lewis acidic species and the stronger Lewis acid 7+ effectively mediates alkene, alkyne and CO2 hydrosilylation catalysis. All supporting data hints at Lewis acid type activation-functionalization processes. Despite a lower energy LUMO in 5+ and 7+ , their observed reactivity is comparable to those of N-heterocyclic carbene (NHC) analogues, in line with charge-controlled reactions for carbene-stabilized ZnII organocations.

16.
Adv Synth Catal ; 361(23): 5412-5420, 2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-31875866

RESUMO

An efficient additive-free manganese-catalyzed hydrogenation of nitriles to primary amines with molecular hydrogen is described. The pre-catalyst, a well-defined bench-stable alkyl bisphosphine Mn(I) complex fac-[Mn(dpre)(CO)3(CH3)] (dpre=1,2-bis(di-n-propylphosphino)ethane), undergoes CO migratory insertion into the manganese-alkyl bond to form acyl complexes which upon hydrogenolysis yields the active coordinatively unsaturated Mn(I) hydride catalyst [Mn(dpre)(CO)2(H)]. A range of aromatic and aliphatic nitriles were efficiently and selectively converted into primary amines in good to excellent yields. The hydrogenation of nitriles proceeds at 100 °C with a catalyst loading of 2 mol % and a hydrogen pressure of 50 bar. Mechanistic insights are provided by means of DFT calculations.

17.
Inorg Chem ; 58(7): 4641-4646, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30880390

RESUMO

The synthesis and characterization of air-stable cationic mono nitrosonium Fe(I) PNP pincer complexes of the type [Fe(PNP)(NO)Cl]+ are described. These complexes are obtained via direct nitroslyation of [Fe(PNP)Cl2] with nitric oxide at ambient pressure. On the basis of magnetic and EPR measurements as well as DFT calculations, these compounds were found to adopt a low-spin d7 configuration and feature a nearly linear bound NO ligand suggesting FeINO+ rather than FeIINO• character. X-ray structures of all nitrosonium Fe(I) PNP complexes are presented. Preliminary investigations reveal that [Fe(PNPNH- iPr)(NO)(Cl)]+ efficiently catalyzes the conversion of primary alcohols and aromatic and benzylic amines to yield mono N-alkylated amines in good isolated yields.

18.
Angew Chem Int Ed Engl ; 58(39): 13874-13879, 2019 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-31329346

RESUMO

Herein, we report on the first synthesis and structural characterization of the iron based aminoborane complexes [Fe(PNP)(H)(η2 :η2 -H2 B=NR2 )]+ (R=H, Me). These species are formed upon protonation of the borohydride complex [Fe(PNP)(H)(η2 -BH4 )] by ammonium salts [NH2 R2 ]+ (R=H, Me). For R=Me, the reaction proceeds via the cationic dinuclear intermediate [{Fe(PNP)(H)}2 (µ2 ,η2 :η2 -BH4 )]+ . A mechanism for the reaction is proposed based on DFT calculations that also indicate the final aminoborane complex as the thermodynamic product. All complexes were characterized by NMR spectroscopy, HRMS, and X-ray crystallography.

19.
Inorg Chem ; 57(23): 14671-14685, 2018 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-30421613

RESUMO

This work reports the first successful isolation and full characterization of cobalt(I) complexes of 5-aryl-2-iminopyrrolyl ligands. In one approach, when [Co{κ2 N,N'-5-(2,4,6-R3-C6H2)-NC4H2-2-C(H)═N(2,6-iPr2-C6H3)}(Py)Cl] (R = iPr, 1a; R = Ph, 1b) were reacted with K(HBEt3) or Na(Hg) in toluene, the Co(I) arene complexes [Co{κ2 N,N'-5-(2,4,6-iPr3-C6H2)-NC4H2-2-C(H)═N(2,6-iPr2-C6H3)}(η6-C6H5CH3)] (2a) and [ Co{κ2 N,N'-5-[2'-(κ:η6- C6H5)-C6H2-4',6'-Ph2]-NC4H2-2-C(H)═N(2,6-iPr2-C6H3)}] (2b) were formed. The reaction of complex 1a with KC8 in Et2O yielded the [Co{κ2 N,N'-5-(2,4,6-iPr3-C6H2)-NC4H2-2-C(H)═N(2,6-iPr2-C6H3)}]2 (3). On another approach, the metathesis of potassium 5-(2,4,6-triisopropylphenyl)-2-( N-2,6-diisopropylphenylformimino)pyrrolyl (KLa) with CoCl(PMe3)3 yielded the bis(trimethylphosphine) complex [Co{κ2 N,N'-5-(2,4,6-iPr3-C6H2)-NC4H2-2-C(H)═N(2,6-iPr2-C6H3)}(PMe3)2] (4) in a good yield. Complexes 2a, 3, and 4 are paramagnetic, high-spin species, while 2b is a diamagnetic complex. Compound 2b exhibited a spin isomerism behavior ( S = 0 ↔ S = 1) as determined by variable-temperature 1H NMR experiments (Δ H° = 7.7 kcal mol-1), being also supported by computational studies (Δ E = 4.2 kcal mol-1). All complexes were tested in the hydroboration of styrene with pinacolborane (HBPin), with complex 4 exclusively yielding the respective anti-Markovnikov addition product. Additionally, all complexes catalyzed the fast and quantitative hydroboration of benzaldehyde with HBPin.

20.
Inorg Chem ; 57(13): 7925-7931, 2018 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-29926720

RESUMO

In the current investigation, the reaction of Fe2(CO)9 with the ligand precursor 2-chloro-N1,N3-bis(diisopropylphosphanyl)-N1,N3-diethylbenzene-1,3-diamine (P(C-Cl)PNEt- iPr) (1) was investigated. When a suspension of Fe2(CO)9 and 1 in CH3CN was transferred in a sealed microwave glass vial and stirred for 18 h at 110 °C the complex [Fe(PCPNEt- iPr)(CO)2Cl] (2) was obtained. In an attempt to prepare the hydride Fe(II) complex [Fe(PCPNEt- iPr)(CO)2H] (3), 2 was reacted with 1 equiv of Li[HBEt3] in THF. Instead of ligand substitution, this complex underwent a one electron reduction which led to the formation of the low-spin d7 Fe(I) complex [Fe(PCPNEt- iPr)(CO)2] (4). Exposure of a benzene solution of 4 to NO gas (1 bar) at room temperature affords the diamagnetic complex [Fe(PCPNEt- iPr)(CO)(NO)] (5). This is the first iron PCP nitrosyl complex. Protonation of 5 with HBF4·Et2O affords the cationic Fe(0) complex [Fe(κ3 P,CH,P-P(CH)PNEt- iPr)(CO)(NO)]BF4 (6) which features an η2-Caryl-H agostic bond. Even with relatively weak bases such as NEt3 the agostic C-H bond can be deprotonated with reformation of the starting material 5. Therefore, protonation of 5 is completely reversible.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA