Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 18(12): e1010538, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36520776

RESUMO

Failure is an integral part of life and by extension academia. At the same time, failure is often ignored, with potentially negative consequences both for the science and the scientists involved. This article provides several strategies for learning from and dealing with failure instead of ignoring it. Hopefully, our recommendations are widely applicable, while still taking into account individual differences between academics. These simple rules allow academics to further develop their own strategies for failing successfully in academia.

2.
Alzheimers Dement ; 19(12): 5952-5969, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37837420

RESUMO

INTRODUCTION: A wide range of modifiable risk factors for dementia have been identified. Considerable debate remains about these risk factors, possible interactions between them or with genetic risk, and causality, and how they can help in clinical trial recruitment and drug development. Artificial intelligence (AI) and machine learning (ML) may refine understanding. METHODS: ML approaches are being developed in dementia prevention. We discuss exemplar uses and evaluate the current applications and limitations in the dementia prevention field. RESULTS: Risk-profiling tools may help identify high-risk populations for clinical trials; however, their performance needs improvement. New risk-profiling and trial-recruitment tools underpinned by ML models may be effective in reducing costs and improving future trials. ML can inform drug-repurposing efforts and prioritization of disease-modifying therapeutics. DISCUSSION: ML is not yet widely used but has considerable potential to enhance precision in dementia prevention. HIGHLIGHTS: Artificial intelligence (AI) is not widely used in the dementia prevention field. Risk-profiling tools are not used in clinical practice. Causal insights are needed to understand risk factors over the lifespan. AI will help personalize risk-management tools for dementia prevention. AI could target specific patient groups that will benefit most for clinical trials.


Assuntos
Inteligência Artificial , Demência , Humanos , Aprendizado de Máquina , Fatores de Risco , Desenvolvimento de Medicamentos , Demência/prevenção & controle
3.
Alzheimers Dement ; 19(12): 5885-5904, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37563912

RESUMO

INTRODUCTION: Artificial intelligence (AI) and neuroimaging offer new opportunities for diagnosis and prognosis of dementia. METHODS: We systematically reviewed studies reporting AI for neuroimaging in diagnosis and/or prognosis of cognitive neurodegenerative diseases. RESULTS: A total of 255 studies were identified. Most studies relied on the Alzheimer's Disease Neuroimaging Initiative dataset. Algorithmic classifiers were the most commonly used AI method (48%) and discriminative models performed best for differentiating Alzheimer's disease from controls. The accuracy of algorithms varied with the patient cohort, imaging modalities, and stratifiers used. Few studies performed validation in an independent cohort. DISCUSSION: The literature has several methodological limitations including lack of sufficient algorithm development descriptions and standard definitions. We make recommendations to improve model validation including addressing key clinical questions, providing sufficient description of AI methods and validating findings in independent datasets. Collaborative approaches between experts in AI and medicine will help achieve the promising potential of AI tools in practice. HIGHLIGHTS: There has been a rapid expansion in the use of machine learning for diagnosis and prognosis in neurodegenerative disease Most studies (71%) relied on the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset with no other individual dataset used more than five times There has been a recent rise in the use of more complex discriminative models (e.g., neural networks) that performed better than other classifiers for classification of AD vs healthy controls We make recommendations to address methodological considerations, addressing key clinical questions, and validation We also make recommendations for the field more broadly to standardize outcome measures, address gaps in the literature, and monitor sources of bias.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Humanos , Doença de Alzheimer/diagnóstico por imagem , Prognóstico , Inteligência Artificial , Encéfalo/diagnóstico por imagem , Neuroimagem/métodos
4.
Brain ; 144(4): 1247-1262, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33734344

RESUMO

Patients with small vessel cerebrovascular disease frequently suffer from apathy, a debilitating neuropsychiatric syndrome, the underlying mechanisms of which remain to be established. Here we investigated the hypothesis that apathy is associated with disrupted decision making in effort-based decision making, and that these alterations are associated with abnormalities in the white matter network connecting brain regions that underpin such decisions. Eighty-two patients with MRI evidence of small vessel disease were assessed using a behavioural paradigm as well as diffusion weighted MRI. The decision-making task involved accepting or rejecting monetary rewards in return for performing different levels of physical effort (hand grip force). Choice data and reaction times were integrated into a drift diffusion model that framed decisions to accept or reject offers as stochastic processes approaching a decision boundary with a particular drift rate. Tract-based spatial statistics were used to assess the relationship between white matter tract integrity and apathy, while accounting for depression. Overall, patients with apathy accepted significantly fewer offers on this decision-making task. Notably, while apathetic patients were less responsive to low rewards, they were also significantly averse to investing in high effort. Significant reductions in white matter integrity were observed to be specifically related to apathy, but not to depression. These included pathways connecting brain regions previously implicated in effort-based decision making in healthy people. The drift rate to decision parameter was significantly associated with both apathy and altered white matter tracts, suggesting that both brain and behavioural changes in apathy are associated with this single parameter. On the other hand, depression was associated with an increase in the decision boundary, consistent with an increase in the amount of evidence required prior to making a decision. These findings demonstrate altered effort-based decision making for reward in apathy, and also highlight dissociable mechanisms underlying apathy and depression in small vessel disease. They provide clear potential brain and behavioural targets for future therapeutic interventions, as well as modelling parameters that can be used to measure the effects of treatment at the behavioural level.


Assuntos
Apatia/fisiologia , Encéfalo/fisiopatologia , Doenças de Pequenos Vasos Cerebrais/complicações , Doenças de Pequenos Vasos Cerebrais/fisiopatologia , Tomada de Decisões/fisiologia , Idoso , Doenças de Pequenos Vasos Cerebrais/psicologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade
5.
Neuroimage ; 229: 117742, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33454405

RESUMO

Scientific research aims to bring forward innovative ideas and constantly challenges existing knowledge structures and stereotypes. However, women, ethnic and cultural minorities, as well as individuals with disabilities, are systematically discriminated against or even excluded from promotions, publications, and general visibility. A more diverse workforce is more productive, and thus discrimination has a negative impact on science and the wider society, as well as on the education, careers, and well-being of individuals who are discriminated against. Moreover, the lack of diversity at scientific gatherings can lead to micro-aggressions or harassment, making such meetings unpleasant, or even unsafe environments for early career and underrepresented scientists. At the Organization for Human Brain Mapping (OHBM), we recognized the need for promoting underrepresented scientists and creating diverse role models in the field of neuroimaging. To foster this, the OHBM has created a Diversity and Inclusivity Committee (DIC). In this article, we review the composition and activities of the DIC that have promoted diversity within OHBM, in order to inspire other organizations to implement similar initiatives. Activities of the committee over the past four years have included (a) creating a code of conduct, (b) providing diversity and inclusivity education for OHBM members, (c) organizing interviews and symposia on diversity issues, and (d) organizing family-friendly activities and providing childcare grants during the OHBM annual meetings. We strongly believe that these activities have brought positive change within the wider OHBM community, improving inclusivity and fostering diversity while promoting rigorous, ground-breaking science. These positive changes could not have been so rapidly implemented without the enthusiastic support from the leadership, including OHBM Council and Program Committee, and the OHBM Special Interest Groups (SIGs), namely the Open Science, Student and Postdoc, and Brain-Art SIGs. Nevertheless, there remains ample room for improvement, in all areas, and even more so in the area of targeted attempts to increase inclusivity for women, individuals with disabilities, members of the LGBTQ+ community, racial/ethnic minorities, and individuals of lower socioeconomic status or from low and middle-income countries. Here, we present an overview of the DIC's composition, its activities, future directions and challenges. Our goal is to share our experiences with a wider audience to provide information to other organizations and institutions wishing to implement similar comprehensive diversity initiatives. We propose that scientific organizations can push the boundaries of scientific progress only by moving beyond existing power structures and by integrating principles of equity and inclusivity in their core values.


Assuntos
Centros Médicos Acadêmicos/métodos , Mapeamento Encefálico/métodos , Diversidade Cultural , Preconceito/etnologia , Preconceito/prevenção & controle , Sociedades Científicas , Centros Médicos Acadêmicos/tendências , Mapeamento Encefálico/tendências , Criatividade , Pessoas com Deficiência , Etnicidade , Humanos , Preconceito/psicologia , Sociedades Científicas/tendências
6.
Stroke ; 51(9): e183-e192, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32772680

RESUMO

BACKGROUND AND PURPOSE: Brain atrophy can be regarded as an end-organ effect of cumulative cardiovascular risk factors. Accelerated brain atrophy is described following ischemic stroke, but it is not known whether atrophy rates vary over the poststroke period. Examining rates of brain atrophy allows the identification of potential therapeutic windows for interventions to prevent poststroke brain atrophy. METHODS: We charted total and regional brain volume and cortical thickness trajectories, comparing atrophy rates over 2 time periods in the first year after ischemic stroke: within 3 months (early period) and between 3 and 12 months (later period). Patients with first-ever or recurrent ischemic stroke were recruited from 3 Melbourne hospitals at 1 of 2 poststroke time points: within 6 weeks (baseline) or 3 months. Whole-brain 3T magnetic resonance imaging was performed at 3 time points: baseline, 3 months, and 12 months. Eighty-six stroke participants completed testing at baseline; 125 at 3 months (76 baseline follow-up plus 49 delayed recruitment); and 113 participants at 12 months. Their data were compared with 40 healthy control participants with identical testing. We examined 5 brain measures: hippocampal volume, thalamic volume, total brain and hemispheric brain volume, and cortical thickness. We tested whether brain atrophy rates differed between time points and groups. A linear mixed-effect model was used to compare brain structural changes, including age, sex, years of education, a composite cerebrovascular risk factor score, and total intracranial volume as covariates. RESULTS: Atrophy rates were greater in stroke than control participants. Ipsilesional hemispheric, hippocampal, and thalamic atrophy rates were 2 to 4 times greater in the early versus later period. CONCLUSIONS: Regional atrophy rates vary over the first year after stroke. Rapid brain volume loss in the first 3 months after stroke may represent a potential window for intervention. Registration: URL: https://www.clinicaltrials.gov. Unique identifier: NCT02205424.


Assuntos
Atrofia , Isquemia Encefálica/patologia , Encéfalo/patologia , Acidente Vascular Cerebral/patologia , Adulto , Fatores Etários , Idoso , Encéfalo/diagnóstico por imagem , Isquemia Encefálica/diagnóstico por imagem , Córtex Cerebral/diagnóstico por imagem , Progressão da Doença , Feminino , Hipocampo/diagnóstico por imagem , Hipocampo/patologia , Humanos , Processamento de Imagem Assistida por Computador , Modelos Lineares , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Recidiva , Fatores Sexuais , Acidente Vascular Cerebral/diagnóstico por imagem , Tálamo/diagnóstico por imagem , Tálamo/patologia , Resultado do Tratamento
7.
Eur J Neurosci ; 49(9): 1069-1076, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30589962

RESUMO

Mentorship facilitates personal growth through pairing trainees with mentors who can share their expertise. In times of global integration, geographical proximity between mentors and mentees is relevant to a lesser degree. This has led to popularization of online mentoring programs. In this editorial, we introduce the history and architecture of the International Online Mentoring Programme organized by the Student and Postdoc Special Interest Group of the Organization for Human Brain Mapping.


Assuntos
Mapeamento Encefálico , Educação a Distância/métodos , Tutoria/métodos , Neurociências/educação , Pesquisadores/educação , Humanos
9.
Neuroimage ; 159: 131-145, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28729161

RESUMO

Recent evidence suggests that visual short-term memory (VSTM) capacity estimated using simple objects, such as colours and oriented bars, may not generalise well to more naturalistic stimuli. More visual detail can be stored in VSTM when complex, recognisable objects are maintained compared to simple objects. It is not yet known if it is recognisability that enhances memory precision, nor whether maintenance of recognisable objects is achieved with the same network of brain regions supporting maintenance of simple objects. We used a novel stimulus generation method to parametrically warp photographic images along a continuum, allowing separate estimation of the precision of memory representations and the number of items retained. The stimulus generation method was also designed to create unrecognisable, though perceptually matched, stimuli, to investigate the impact of recognisability on VSTM. We adapted the widely-used change detection and continuous report paradigms for use with complex, photographic images. Across three functional magnetic resonance imaging (fMRI) experiments, we demonstrated greater precision for recognisable objects in VSTM compared to unrecognisable objects. This clear behavioural advantage was not the result of recruitment of additional brain regions, or of stronger mean activity within the core network. Representational similarity analysis revealed greater variability across item repetitions in the representations of recognisable, compared to unrecognisable complex objects. We therefore propose that a richer range of neural representations support VSTM for complex recognisable objects.


Assuntos
Encéfalo/fisiologia , Memória de Curto Prazo/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Adolescente , Adulto , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Estimulação Luminosa/métodos , Adulto Jovem
10.
Neurocase ; 23(3-4): 201-209, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28789579

RESUMO

We present a patient with reading inexpertise and right hemianopia following left posterior cerebral artery (PCA) stroke. We examine the extent of disruption to reading performance and the extent of white matter tract damage relative to a patient with more limited PCA infarction and isolated right hemianopia. We show white matter disconnection of the temporal occipital fusiform cortex in our pure alexia patient. Connectivity-based laterality indices revealed right hemisphere laterality in the alexia patient; this was not associated with improved reading function. We speculate that the degree of premorbid laterality may be a critical factor affecting the extent of reading dysfunction in alexia.


Assuntos
Alexia Pura/patologia , Alexia Pura/fisiopatologia , Encéfalo/patologia , Encéfalo/fisiopatologia , Lateralidade Funcional , Leitura , Alexia Pura/diagnóstico por imagem , Alexia Pura/etiologia , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Imagem de Difusão por Ressonância Magnética , Feminino , Hemianopsia/etiologia , Humanos , Infarto da Artéria Cerebral Posterior/complicações , Pessoa de Meia-Idade , Lobo Occipital/diagnóstico por imagem , Lobo Occipital/patologia , Lobo Occipital/fisiopatologia , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/patologia , Lobo Temporal/fisiopatologia
12.
13.
Hum Brain Mapp ; 36(4): 1620-36, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25469481

RESUMO

Blood oxygenation level-dependent (BOLD) signal changes are often assumed to directly reflect neural activity changes. Yet the real relationship is indirect, reliant on numerous assumptions, and subject to several sources of noise. Deviations from the core assumptions of BOLD contrast functional magnetic resonance imaging (fMRI), and their implications, have been well characterized in healthy populations, but are frequently neglected in stroke populations. In addition to conspicuous local structural and vascular changes after stroke, there are many less obvious challenges in the imaging of stroke populations. Perilesional ischemic changes, remodeling in regions distant to lesion sites, and diffuse perfusion changes all complicate interpretation of BOLD signal changes in standard fMRI protocols. Most stroke patients are also older than the young populations on which assumptions of neurovascular coupling and the typical analysis pipelines are based. We present a review of the evidence to show that the basic assumption of neurovascular coupling on which BOLD-fMRI relies does not capture the complex changes arising from stroke, both pathological and recovery related. As a result, estimating neural activity using the canonical hemodynamic response function is inappropriate in a number of contexts. We review methods designed to better estimate neural activity in stroke populations. One promising alternative to event-related fMRI is a resting-state-derived functional connectivity approach. Resting-state fMRI is well suited to stroke populations because it makes no performance demands on patients and is capable of revealing network-based pathology beyond the lesion site.


Assuntos
Encéfalo/fisiopatologia , Imageamento por Ressonância Magnética/métodos , Acidente Vascular Cerebral/fisiopatologia , Envelhecimento/fisiologia , Encéfalo/irrigação sanguínea , Circulação Cerebrovascular/fisiologia , Humanos , Vias Neurais/fisiopatologia , Oxigênio/sangue , Descanso , Acidente Vascular Cerebral/etiologia
14.
BMJ Evid Based Med ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38719437

RESUMO

OBJECTIVES: Despite rising rates of multimorbidity, existing risk assessment tools are mostly limited to a single outcome of interest. This study tests the feasibility of producing multiple disease risk estimates with at least 70% discrimination (area under the receiver operating curve, AUROC) within the time and information constraints of the existing primary care health check framework. DESIGN: Observational prospective cohort study SETTING: UK Biobank. PARTICIPANTS: 228 240 adults from the UK population. INTERVENTIONS: None. MAIN OUTCOME MEASURES: Myocardial infarction, atrial fibrillation, heart failure, stroke, all-cause dementia, chronic kidney disease, fatty liver disease, alcoholic liver disease, liver cirrhosis and liver failure. RESULTS: Using a set of predictors easily gathered at the standard primary care health check (such as the National Health Service Health Check), we demonstrate that it is feasible to simultaneously produce risk estimates for multiple disease outcomes with AUROC of 70% or greater. These predictors can be entered once into a single form and produce risk scores for stroke (AUROC 0.727, 95% CI 0.713 to 0.740), all-cause dementia (0.823, 95% CI 0.810 to 0.836), myocardial infarction (0.785, 95% CI 0.775 to 0.795), atrial fibrillation (0.777, 95% CI 0.768 to 0.785), heart failure (0.828, 95% CI 0.818 to 0.838), chronic kidney disease (0.774, 95% CI 0.765 to 0.783), fatty liver disease (0.766, 95% CI 0.753 to 0.779), alcoholic liver disease (0.864, 95% CI 0.835 to 0.894), liver cirrhosis (0.763, 95% CI 0.734 to 0.793) and liver failure (0.746, 95% CI 0.695 to 0.796). CONCLUSIONS: Easily collected diagnostics can be used to assess 10-year risk across multiple disease outcomes, without the need for specialist computing or invasive biomarkers. Such an approach could increase the utility of existing data and place multiorgan risk information at the fingertips of primary care providers, thus creating opportunities for longer-term multimorbidity prevention. Additional work is needed to validate whether these findings would hold in a larger, more representative cohort outside the UK Biobank.

15.
Ann Clin Transl Neurol ; 11(4): 1053-1058, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38303486

RESUMO

Patient-reported quality-of-life (QoL) and carer impacts are not reported after leucine-rich glioma-inactivated 1-antibody encephalitis (LGI1-Ab-E). From 60 patients, 85% (51 out of 60) showed one abnormal score across QoL assessments and 11 multimodal validated questionnaires. Compared to the premorbid state, QoL significantly deteriorated (p < 0.001) and, at a median of 41 months, fatigue was its most important predictor (p = 0.025). In total, 51% (26 out of 51) of carers reported significant burden. An abbreviated five-item battery explained most variance in QoL. Wide-ranging impacts post-LGI1-Ab-E include decreased QoL and high caregiver strain. We identify a rapid method to capture QoL in routine clinic or clinical trial settings.


Assuntos
Encefalite , Glioma , Humanos , Leucina , Qualidade de Vida , Peptídeos e Proteínas de Sinalização Intracelular , Autoanticorpos , Fadiga/etiologia
17.
Am J Prev Med ; 64(5): 621-630, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37085245

RESUMO

INTRODUCTION: Socioeconomic factors and genetic predisposition are established risk factors for dementia. It remains unclear whether associations of socioeconomic deprivation with dementia incidence are modified by genetic risk. METHODS: Participants in the UK Biobank aged ≥60 years and of European ancestry without dementia at baseline (2006-2010) were eligible for the analysis, with the main exposures area-level deprivation based on the Townsend Deprivation Index and individual-level socioeconomic deprivation based on car and home ownership, housing type and income, and polygenic risk of dementia. Dementia was ascertained in hospital and death records. Analysis was conducted in 2021. RESULTS: In this cohort study, 196,368 participants (mean [SD] age=64.1 [2.9] years, 52.7% female) were followed up for 1,545,316 person-years (median [IQR] follow-up=8.0 [7.4-8.6] years). In high genetic risk and high area-level deprivation, 1.71% (95% CI=1.44, 2.01) developed dementia compared with 0.56% (95% CI=0.48, 0.65) in low genetic risk and low-to-moderate area-level deprivation (hazard ratio=2.31; 95% CI=1.84, 2.91). In high genetic risk and high individual-level deprivation, 1.78% (95% CI=1.50, 2.09) developed dementia compared with 0.31% (95% CI=0.20, 0.45) in low genetic risk and low individual-level deprivation (hazard ratio=4.06; 95% CI=2.63, 6.26). There was no significant interaction between genetic risk and area-level (p=0.77) or individual-level (p=0.07) deprivation. An imaging substudy including 11,083 participants found a greater burden of white matter hyperintensities associated with higher socioeconomic deprivation. CONCLUSIONS: Individual-level and area-level socioeconomic deprivation were associated with increased dementia risk. Dementia prevention interventions may be particularly effective if targeted to households and areas with fewer socioeconomic resources, regardless of genetic vulnerability.


Assuntos
Demência , Renda , Humanos , Feminino , Masculino , Estudos de Coortes , Fatores de Risco , Fatores Socioeconômicos , Demência/etiologia , Demência/genética
18.
Brain Inform ; 10(1): 6, 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36829050

RESUMO

Progress in dementia research has been limited, with substantial gaps in our knowledge of targets for prevention, mechanisms for disease progression, and disease-modifying treatments. The growing availability of multimodal data sets opens possibilities for the application of machine learning and artificial intelligence (AI) to help answer key questions in the field. We provide an overview of the state of the science, highlighting current challenges and opportunities for utilisation of AI approaches to move the field forward in the areas of genetics, experimental medicine, drug discovery and trials optimisation, imaging, and prevention. Machine learning methods can enhance results of genetic studies, help determine biological effects and facilitate the identification of drug targets based on genetic and transcriptomic information. The use of unsupervised learning for understanding disease mechanisms for drug discovery is promising, while analysis of multimodal data sets to characterise and quantify disease severity and subtype are also beginning to contribute to optimisation of clinical trial recruitment. Data-driven experimental medicine is needed to analyse data across modalities and develop novel algorithms to translate insights from animal models to human disease biology. AI methods in neuroimaging outperform traditional approaches for diagnostic classification, and although challenges around validation and translation remain, there is optimism for their meaningful integration to clinical practice in the near future. AI-based models can also clarify our understanding of the causality and commonality of dementia risk factors, informing and improving risk prediction models along with the development of preventative interventions. The complexity and heterogeneity of dementia requires an alternative approach beyond traditional design and analytical approaches. Although not yet widely used in dementia research, machine learning and AI have the potential to unlock current challenges and advance precision dementia medicine.

19.
JAMA Ophthalmol ; 141(1): 84-91, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36394831

RESUMO

Importance: Several ocular biomarkers have been proposed for the early detection of Alzheimer disease (AD) and mild cognitive impairment (MCI), particularly fundus photography, optical coherence tomography (OCT), and OCT angiography (OCTA). Objective: To perform an umbrella review of systematic reviews to assess the diagnostic accuracy of ocular biomarkers for early diagnosis of Alzheimer disease. Data Sources: MEDLINE, Embase, and PsycINFO were searched from January 2000 to November 2021. The references of included reviews were also searched. Study Selection: Systematic reviews investigating the diagnostic accuracy of ocular biomarkers to detect AD and MCI, in secondary care or memory clinics, against established clinical criteria or clinical judgment. Data Extraction and Synthesis: The Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) reporting guideline checklist was followed and the Risk Of Bias in Systematic reviews tool was used to assess review quality. Main Outcomes and Measures: The prespecified outcome was the accuracy of ocular biomarkers for diagnosing AD and MCI. The area under the curve (AUC) was derived from standardized mean difference. Results: From the 591 titles, 14 systematic reviews were included (median [range] number of studies in each review, 14 [5-126]). Only 4 reviews were at low risk of bias on all Risk of Bias in Systematic Reviews domains. The imaging-derived parameters with the most evidence for detecting AD compared with healthy controls were OCT peripapillary retinal nerve fiber layer thickness (38 studies including 1883 patients with AD and 2510 controls; AUC = 0.70; 95% CI, 0.53-0.79); OCTA foveal avascular zone (5 studies including 177 patients with AD and 371 controls; AUC = 0.73; 95% CI, 0.50-0.89); and saccadic eye movements prosaccade latency (30 studies including 651 patients with AD/MCI and 771 controls; AUC = 0.64; 95% CI, 0.58-0.69). Antisaccade error was investigated in fewer studies (12 studies including 424 patients with AD/MCI and 382 controls) and yielded the best accuracy (AUC = 0.79; 95% CI, 0.70-0.88). Conclusions and Relevance: This umbrella review has highlighted limitations in design and reporting of the existing research on ocular biomarkers for diagnosing AD. Parameters with the best evidence showed poor to moderate diagnostic accuracy in cross-sectional studies. Future longitudinal studies should investigate whether changes in OCT and OCTA measurements over time can yield accurate predictions of AD onset.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/diagnóstico , Estudos Transversais , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/complicações , Retina , Biomarcadores
20.
Hum Brain Mapp ; 33(2): 387-97, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21391273

RESUMO

A key challenge of object recognition is achieving a balance between selectivity for relevant features and invariance to irrelevant ones. Computational and cognitive models predict that optimal selectivity for features will differ by object, and here we investigate whether this is reflected in visual representations in the human ventral stream. We describe a new real-time neuroimaging method, dynamically adaptive imaging (DAI), that enabled measurement of neural selectivity along multiple feature dimensions in the neighborhood of single referent objects. The neural response evoked by a referent was compared to that evoked by 91 naturalistic objects using multi-voxel pattern analysis. Iteratively, the objects evoking the most similar responses were selected and presented again, to converge upon a subset that characterizes the referent's "neural neighborhood." This was used to derive the feature selectivity of the response. For three different referents, we found strikingly different selectivity, both in individual features and in the balance of tuning to sensory versus semantic features. Additional analyses placed a lower bound on the number of distinct activation patterns present. The results suggest that either the degree of specificity available for object representation in the ventral stream varies by class, or that different objects evoke different processing strategies.


Assuntos
Reconhecimento Visual de Modelos/fisiologia , Percepção Visual/fisiologia , Adulto , Mapeamento Encefálico , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Neuroimagem , Semântica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA