Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Cell Sci ; 121(Pt 21): 3649-63, 2008 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-18946028

RESUMO

Epithelial cells assemble into three-dimensional aggregates to generate lumen-containing organ substructures. Cells therein contact the extracellular matrix with their basal surface, neighbouring cells with their contact surface and the lumen with their apical surface. We investigated the development of single MDCK cells into aggregates with lumen using quantitative live-cell imaging to identify morphogenetic rules for lumen formation. In two-cell aggregates, membrane insertion into the contact surface established a preapical patch (PAP) characterized by the presence of the apical marker gp135, microvilli and the absence of E-cadherin. This PAP originated from a compartment that had hallmarks of an apical recycling endosome, and matured through Brefeldin-A-sensitive membrane trafficking and the establishment of tight junctions around itself. As a result of the activity of water and ion channels, an optically resolvable lumen formed. Initially, this lumen enlarged without changes in aggregate volume or cell number but with decreasing cell volumes. Additionally, the ROCK1/2-myosin-II pathway counteracted PAP and lumen formation. Thus, lumen formation results from PAP establishment, PAP maturation, lumen initiation and lumen enlargement. These phases correlate with distinct cell surface and volume patterns, which suggests that such morphometric parameters are regulated by trafficking, ROCK-mediated contractility and hydrostatic pressure or vice versa.


Assuntos
Membrana Celular/metabolismo , Junções Íntimas/metabolismo , Quinases Associadas a rho/fisiologia , Animais , Brefeldina A/farmacologia , Caderinas/metabolismo , Colágeno/química , Cães , Células Epiteliais/metabolismo , Matriz Extracelular/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Modelos Biológicos , Miosina Tipo II/metabolismo , Quinases Associadas a rho/metabolismo
2.
J Biol Chem ; 282(1): 426-35, 2007 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-17085436

RESUMO

IQGAP1 is a conserved modular protein overexpressed in cancer and involved in organizing actin and microtubules in motile processes such as adhesion, migration, and cytokinesis. A variety of proteins have been shown to interact with IQGAP1, including the small G proteins Rac1 and Cdc42, actin, calmodulin, beta-catenin, the microtubule plus end-binding proteins CLIP170 (cytoplasmic linker protein) and adenomatous polyposis coli. However, the molecular mechanism by which IQGAP1 controls actin dynamics in cell motility is not understood. Quantitative co-localization analysis and down-regulation of IQGAP1 revealed that IQGAP1 controls the co-localization of N-WASP with the Arp2/3 complex in lamellipodia. Co-immunoprecipitation supports an in vivo link between IQGAP1 and N-WASP. Pull-down experiments and kinetic assays of branched actin polymerization with N-WASP and Arp2/3 complex demonstrated that the C-terminal half of IQGAP1 activates N-WASP by interacting with its BR-CRIB domain in a Cdc42-like manner, whereas the N-terminal half of IQGAP1 antagonizes this activation by association with a C-terminal region of IQGAP1. We propose that signal-induced relief of the autoinhibited fold of IQGAP1 allows activation of N-WASP to stimulate Arp2/3-dependent actin assembly.


Assuntos
Proteína 2 Relacionada a Actina/química , Proteína 3 Relacionada a Actina/química , Actinas/química , Proteína Neuronal da Síndrome de Wiskott-Aldrich/química , Proteínas Ativadoras de ras GTPase/química , Animais , Cães , Regulação Neoplásica da Expressão Gênica , Humanos , Imunoprecipitação , Proteínas Associadas aos Microtúbulos/química , Modelos Biológicos , Proteínas de Neoplasias/química , Ligação Proteica , Desnaturação Proteica , Estrutura Terciária de Proteína
3.
Biophys J ; 90(12): 4380-91, 2006 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-16565042

RESUMO

Mechanical interactions between cells and extracellular matrix (ECM) mediate epithelial cyst formation. This work relies on the combination of numerical modeling with live cell imaging, to piece together a novel nonintrusive method for determining three-dimensional (3D) mechanical forces caused by shape changes of a multicellular aggregate at the early stages of epithelial cyst formation. We analyzed the evolution of Madin-Darby canine kidney cells in 3D cultures using time-lapse microscopy, with type I collagen gel forming the ECM. The evolving 3D interface between the ECM and the cell aggregate was obtained from microscopy images, and the stress on the surface of a proliferating aggregate and in the surrounding ECM was calculated using the finite element method. The viscoelastic properties of the ECM (a needed input for the finite element method solver) were obtained through oscillatory shear flow experiments on a rheometer. For validation purpose, the forces exerted by an aggregate on a force-sensor array were measured and compared against the computational results.


Assuntos
Colágeno Tipo I/fisiologia , Células Epiteliais/fisiologia , Matriz Extracelular/fisiologia , Rim/fisiologia , Mecanotransdução Celular/fisiologia , Modelos Biológicos , Animais , Linhagem Celular , Colágeno Tipo I/ultraestrutura , Simulação por Computador , Cães , Elasticidade , Células Epiteliais/ultraestrutura , Matriz Extracelular/ultraestrutura , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Rim/ultraestrutura , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA