Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
1.
Nano Lett ; 24(6): 1931-1935, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38315038

RESUMO

Biased metal-molecule-metal junctions emit light through electroluminescence, a phenomenon at the intersection of molecular electronics and nanoplasmonics. This can occur when the junction plasmon mode is excited by inelastic electron current fluctuations. Here, we simultaneously measure the conductance and electroluminescence intensity from single-molecule junctions with time resolution in a solution environment at room temperature. We use current versus bias data to determine the molecular junction transport parameters and then relate these to the expected current shot noise. We find that the electroluminescence signal accurately matches the theoretical prediction of shot-noise-driven emission in a large fraction of the molecular junctions studied. This introduces a novel experimental method for qualitatively estimating finite-frequency shot noise in single-molecule junctions under ambient conditions. We further demonstrate that electroluminescence can be used to obtain the level alignment of the frontier orbital dominating transport in the molecular junction.

2.
Nano Lett ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39023006

RESUMO

The electrostatic environment around nanoscale molecular junctions modulates charge transport; solvents alter this environment. Methods to directly probe solvent effects require correlating measurements of the local electrostatic environment with charge transport across the metal-molecule-metal junction. Here, we measure the conductance and current-voltage characteristics of molecular wires using a scanning tunneling microscope-break junction (STM-BJ) setup in two commonly used solvents. Our results show that the solvent environment induces shifts in molecular conductance, which we quantify, but more importantly we find that the solvent also impacts the magnitude of current rectification in molecular junctions. By incorporating electrochemical impedance spectroscopy into the STM-BJ setup, we measure the capacitance of the dipole layer formed at the metal-solvent interface and show that rectification can be correlated with solvent capacitance. These results provide a method of quantifying the impact of the solvent environment and a path toward improved environmental control of molecular devices.

3.
Nano Lett ; 24(2): 703-707, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38175934

RESUMO

Gold-dithiol molecular junctions have been studied both experimentally and theoretically. However, the nature of the gold-thiolate bond as it relates to the solvent has seldom been investigated. It is known that solvents can impact the electronic structure of single-molecule junctions, but the correlation between the solvent and dithiol-linked single-molecule junction conductance is not well understood. We study molecular junctions formed with thiol-terminated phenylenes from both 1-chloronaphthalene and 1-bromonaphthalene solutions. We find that the most probable conductance and the distribution of conductances are both affected by the solvent. First-principles calculations show that junction conductance depends on the binding configurations (adatom, atop, and bridge) of the thiolate on the Au surface, as has been shown previously. More importantly, we find that brominated solvents can restrict the binding of thiols to specific Au sites. This mechanism offers new insight into the effects of the solvent environment on covalent bonding in molecular junctions.

4.
J Am Chem Soc ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38832840

RESUMO

Single-molecule one-dimensional topological insulator (1D TI) is a class of molecular wires that exhibit increasing conductance with wire length. This unique trend is due to the coupling between the two low-lying topological edge states of 1D TIs described by the Su-Schrieffer-Heeger model. In principle, this quantum phenomenon within 1D TIs can be utilized to achieve long-range gating in molecular conductors. Here, we study electron transport through a single-edge state of doubly oxidized oligophenylene bis(triarylamine) to understand the effect of the edge state coupling on conductance. We find that conductance is elevated by approximately 1 order of magnitude compared to a control molecule with the same conductance pathway. Density function theory calculations further support that the increase in conductance is due to the interaction between the edge states of 1D TIs. This work demonstrates a new gating paradigm in molecular electronics, while also providing a deeper understanding of how edge states interact and affect electron transport within 1D TIs.

5.
J Am Chem Soc ; 146(6): 3646-3650, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38293735

RESUMO

The successful incorporation of molecules as active circuit elements relies on the ability to tune their electronic properties through chemical design. A synthetic strategy that has been used to manipulate and gate circuit conductance involves attaching a pendant substituent along the molecular conduction pathway. However, such a chemical gate has not yet been shown to significantly modify conductance. Here, we report a novel series of triarylmethylium and triangulenium carbocations gated by different substituents coupled to the delocalized conducting orbitals on the molecular backbone through a Fano resonance. By changing the pendant substituents to modulate the position of the Fano resonance and its coupling to the conducting orbitals, we can regulate the junction conductance by a remarkable factor of 450. This work thus provides a new design principle to enable effective chemical gating of single-molecule devices toward effective molecular transistors.

6.
Nature ; 558(7710): 415-419, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29875407

RESUMO

The tunnelling of electrons through molecules (and through any nanoscale insulating and dielectric material 1 ) shows exponential attenuation with increasing length 2 , a length dependence that is reflected in the ability of the electrons to carry an electrical current. It was recently demonstrated3-5 that coherent tunnelling through a molecular junction can also be suppressed by destructive quantum interference 6 , a mechanism that is not length-dependent. For the carbon-based molecules studied previously, cancelling all transmission channels would involve the suppression of contributions to the current from both the π-orbital and σ-orbital systems. Previous reports of destructive interference have demonstrated a decrease in transmission only through the π-channel. Here we report a saturated silicon-based molecule with a functionalized bicyclo[2.2.2]octasilane moiety that exhibits destructive quantum interference in its σ-system. Although molecular silicon typically forms conducting wires 7 , we use a combination of conductance measurements and ab initio calculations to show that destructive σ-interference, achieved here by locking the silicon-silicon bonds into eclipsed conformations within a bicyclic molecular framework, can yield extremely insulating molecules less than a nanometre in length. Our molecules also exhibit an unusually high thermopower (0.97 millivolts per kelvin), which is a further experimental signature of the suppression of all tunnelling paths by destructive interference: calculations indicate that the central bicyclo[2.2.2]octasilane unit is rendered less conductive than the empty space it occupies. The molecular design presented here provides a proof-of-concept for a quantum-interference-based approach to single-molecule insulators.

7.
Nano Lett ; 23(2): 567-572, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36602221

RESUMO

Understanding how molecular geometry affects the electronic properties of single-molecule junctions experimentally has been challenging. Typically, metal-molecule-metal junctions are measured using a break-junction method where electrode separation is mechanically evolving during measurement. Here, to probe the impact of the junction geometry on conductance, we apply a sinusoidal modulation to the molecular junction electrode position. Simultaneously, we probe the nonlinearity of the current-voltage characteristics of each junction through a modulation in the applied bias at a different frequency. In turn, we show that junctions formed with molecules that have different molecule-electrode interfaces exhibit statistically distinguishable Fourier-transformed conductances. In particular, we find a marked bias dependence for the modulation of junctions where transmission is mediated thorough the van der Waals (vdW) interaction. We attribute our findings to voltage-modulated vdW interactions at the single-molecule level.

8.
J Am Chem Soc ; 145(33): 18182-18204, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37555594

RESUMO

Radicals are unique molecular systems for applications in electronic devices due to their open-shell electronic structures. Radicals can function as good electrical conductors and switches in molecular circuits while also holding great promise in the field of molecular spintronics. However, it is both challenging to create stable, persistent radicals and to understand their properties in molecular junctions. The goal of this Perspective is to address this dual challenge by providing design principles for the synthesis of stable radicals relevant to molecular junctions, as well as offering current insight into the electronic properties of radicals in single-molecule devices. By exploring both the chemical and physical properties of established radical systems, we will facilitate increased exploration and development of radical-based molecular systems.

9.
J Am Chem Soc ; 145(4): 2492-2498, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36689781

RESUMO

Molecular one-dimensional topological insulators (1D TIs), which conduct through energetically low-lying topological edge states, can be extremely highly conducting and exhibit a reversed conductance decay, affording them great potential as building blocks for nanoelectronic devices. However, these properties can only be observed at the short length limit. To extend the length at which these anomalous effects can be observed, we design topological oligo[n]emeraldine wires using short 1D TIs as building blocks. As the wire length increases, the number of topological states increases, enabling an increased electronic transmission along the wire; specifically, we show that we can drive over a microampere current through a single ∼5 nm molecular wire, appreciably more than what has been observed in other long wires reported to date. Calculations and experiments show that the longest oligo[7]emeraldine with doped topological states has over 106 enhancements in the transmission compared to its pristine form. The discovery of these highly conductive, long organic wires helps overcome a fundamental hurdle to implementing molecules in complex, nanoscale circuitry: their structures become too insulating at lengths that are useful in designing nanoscale circuits.

10.
J Am Chem Soc ; 145(22): 11903-11906, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37227235

RESUMO

Electric field acceleration of alkyl hydroperoxide activation to acylate amines in the scanning tunneling microscope-based break-junction is reported. Alkyl hydroperoxide mixtures, generated from hydrocarbon autoxidation in air, were found to be competent reagents for the functionalization of gold surfaces. Intermolecular coupling on the surface in the presence of amines was observed, yielding normal alkylamides. This novel mode of alkyl hydroperoxide activation to generate acylium equivalents was found to be responsive to the magnitude of the bias in the break junction, indicating an electric field influence on this novel reactivity.

11.
Nano Lett ; 22(12): 4919-4924, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35640062

RESUMO

Coherent tunneling electron transport through molecular wires has been theoretically established as a temperature-independent process. Although several experimental studies have shown counter examples, robust models to describe this temperature dependence have not been thoroughly developed. Here, we demonstrate that dynamic molecular structures lead to temperature-dependent conductance within coherent tunneling regime. Using a custom-built variable-temperature scanning tunneling microscopy break-junction instrument, we find that oligo[n]phenylenes exhibit clear temperature-dependent conductance. Our calculations reveal that thermally activated dihedral rotations allow these molecular wires to have a higher probability of being in a planar conformation. As the tunneling occurs primarily through π-orbitals, enhanced coplanarization substantially increases the time-averaged tunneling probability. These calculations are consistent with the observation that more rotational pivot points in longer molecular wires leads to larger temperature-dependence on conductance. These findings reveal that molecular conductance within coherent and off-resonant electron transport regimes can be controlled by manipulating dynamic molecular structure.


Assuntos
Microscopia de Tunelamento , Transporte de Elétrons , Conformação Molecular , Estrutura Molecular , Temperatura
12.
Nano Lett ; 21(1): 673-679, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33337876

RESUMO

Probing structural changes of a molecule induced by charge transfer is important for understanding the physicochemical properties of molecules and developing new electronic devices. Here, we interrogate the structural changes of a single diketopyrrolopyrrole (DPP) molecule induced by charge transport at a high bias using scanning tunneling microscope break junction (STM-BJ) techniques. Specifically, we demonstrate that application of a high bias increases the average nonresonant conductance of single Au-DPP-Au junctions. We infer from the increased conductance that resonant charge transport induces planarization of the molecular backbone. We further show that this conformational planarization is assisted by thermally activated junction reorganization. The planarization only occurs under specific electronic conditions, which we rationalize by ab initio calculations. These results emphasize the need for a comprehensive view of single-molecule junctions which includes both the electronic properties and structure of the molecules and the electrodes when designing electrically driven single-molecule motors.

13.
Nano Lett ; 20(12): 8912-8918, 2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33206534

RESUMO

Light emission from tunnel junctions are a potential photon source for nanophotonic applications. Surprisingly, the photons emitted can have energies exceeding the energy supplied to the electrons by the bias. Three mechanisms for generating these so-called overbias photons have been proposed, but the relationship between these mechanisms has not been clarified. In this work, we argue that multielectron processes provide the best framework for understanding overbias light emission in tunnel junctions. Experimentally, we demonstrate for the first time that the superlinear dependence of emission on conductance predicted by this theory is robust to the temperature of the tunnel junction, indicating that tunnel junctions are a promising candidate for electrically driven broadband photon sources.

14.
Nano Lett ; 20(4): 2843-2848, 2020 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-32142291

RESUMO

Electron transport across a molecular junction is characterized by an energy-dependent transmission function. The transmission function accounts for electrons tunneling through multiple molecular orbitals (MOs) with different phases, which gives rise to quantum interference (QI) effects. Because the transmission function comprises both interfering and noninterfering effects, individual interferences between MOs cannot be deduced from the transmission function directly. Herein, we demonstrate how the transmission function can be deconstructed into its constituent interfering and noninterfering contributions for any model molecular junction. These contributions are arranged in a matrix and displayed pictorially as a QI map, which allows one to easily identify individual QI effects. Importantly, we show that exponential conductance decay with increasing oligomer length is primarily due to an increase in destructive QI. With an ability to "see" QI effects using the QI map, we find that QI is vital to all molecular-scale electron transport.

15.
Nano Lett ; 20(4): 2615-2619, 2020 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-32125870

RESUMO

Polyacetylene molecular wires have attracted a long-standing interest for the past 40 years. From a fundamental perspective, there are two main reasons for the interest. First, polyacetylenes are a prime realization of a one-dimensional topological insulator. Second, long molecules support freely propagating topological domain-wall states, so-called "solitons," which provide an early paradigm for spin-charge separation. Because of recent experimental developments, individual polyacetylene chains can now be synthesized on substrates. Motivated by this breakthrough, we here propose a novel way for chemically supported soliton design in these systems. We demonstrate how to control the soliton position and how to read it out via external means. Also, we show how extra soliton-antisoliton pairs arise when applying a moderate static electric field. We thus make a step toward functionality of electronic devices based on soliton manipulation, that is, "solitonics".

16.
Nano Lett ; 20(5): 3320-3325, 2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32242671

RESUMO

The scanning tunneling microscope-based break junction (STM-BJ) is used widely to create and characterize single metal-molecule-metal junctions. In this technique, conductance is continuously recorded as a metal point contact is broken in a solution of molecules. Conductance plateaus are seen when stable molecular junctions are formed. Typically, thousands of junctions are created and measured, yielding thousands of distinct conductance versus extension traces. However, such traces are rarely analyzed individually to recognize the types of junctions formed. Here, we present a deep learning-based method to identify molecular junctions and show that it performs better than several commonly used and recently reported techniques. We demonstrate molecular junction identification from mixed solution measurements with accuracies as high as 97%. We also apply this model to an in situ electric field-driven isomerization reaction of a [3]cumulene to follow the reaction over time. Furthermore, we demonstrate that our model can remain accurate even when a key parameter, the average junction conductance, is eliminated from the analysis, showing that our model goes beyond conventional analysis in existing methods.

17.
Nano Lett ; 20(9): 6381-6386, 2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32787164

RESUMO

Ferrocenes are ubiquitous organometallic building blocks that comprise a Fe atom sandwiched between two cyclopentadienyl (Cp) rings that rotate freely at room temperature. Of widespread interest in fundamental studies and real-world applications, they have also attracted some interest as functional elements of molecular-scale devices. Here we investigate the impact of the configurational degrees of freedom of a ferrocene derivative on its single-molecule junction conductance. Measurements indicate that the conductance of the ferrocene derivative, which is suppressed by 2 orders of magnitude as compared to a fully conjugated analogue, can be modulated by altering the junction configuration. Ab initio transport calculations show that the low conductance is a consequence of destructive quantum interference effects of the Fano type that arise from the hybridization of localized metal-based d-orbitals and the delocalized ligand-based π-system. By rotation of the Cp rings, the hybridization, and thus the quantum interference, can be mechanically controlled, resulting in a conductance modulation that is seen experimentally.

18.
Nano Lett ; 20(11): 8415-8419, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33095021

RESUMO

One-dimensional sp-hybridized carbon wires, including cumulenes and polyynes, can be regarded as finite versions of carbynes. They are likely to be good candidates for molecular-scale conducting wires as they are predicted to have a high-conductance. In this study, we first characterize the single-molecule conductance of a series of cumulenes and polyynes with a backbone ranging in length from 4 to 8 carbon atoms, including [7]cumulene, the longest cumulenic carbon wire studied to date for molecular electronics. We observe different length dependence of conductance when comparing these two forms of carbon wires. Polyynes exhibit conductance decays with increasing molecular length, while cumulenes show a conductance increase with increasing molecular length. Their distinct conducting behaviors are attributed to their different bond length alternation, which is supported by theoretical calculations. This study confirms the long-standing theoretical predictions on sp-hybridized carbon wires and demonstrates that cumulenes can form highly conducting molecular wires.

19.
J Am Chem Soc ; 142(15): 7128-7133, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32212683

RESUMO

Aryl halides are ubiquitous functional groups in organic chemistry, yet despite their obvious appeal as surface-binding linkers and as precursors for controlled graphene nanoribbon synthesis, they have seldom been used as such in molecular electronics. The confusion regarding the bonding of aryl iodides to Au electrodes is a case in point, with ambiguous reports of both dative Au-I and covalent Au-C contacts. Here we form single-molecule junctions with a series of oligophenylene molecular wires terminated asymmetrically with iodine and thiomethyl to show that the dative Au-I contact has a lower conductance than the covalent Au-C interaction, which we propose occurs via an in situ oxidative addition reaction at the Au surface. Furthermore, we confirm the formation of the Au-C bond by measuring an analogous series of molecules prepared ex situ with the complex AuI(PPh3) in place of the iodide. Density functional theory-based transport calculations support our experimental observations that Au-C linkages have higher conductance than Au-I linkages. Finally, we demonstrate selective promotion of the Au-C bond formation by controlling the bias applied across the junction. In addition to establishing the different binding modes of aryl iodides, our results chart a path to actively controlling oxidative addition on an Au surface using an applied bias.

20.
J Am Chem Soc ; 142(35): 14924-14932, 2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32809814

RESUMO

Atomically precise clusters can be used to create single-electron devices wherein a single redox-active cluster is connected to two macroscopic electrodes via anchoring ligands. Unlike single-electron devices comprising nanocrystals, these cluster-based devices can be fabricated with atomic precision. This affords an unprecedented level of control over the device properties. Herein, we design a series of cobalt chalcogenide clusters with varying ligand geometries and core nuclearities to control their current-voltage (I-V) characteristics in a scanning tunneling microscope-based break junction (STM-BJ) device. First, the device geometry is modified by precisely positioning junction-anchoring ligands on the surface of the cluster. We show that the I-V characteristics are independent of ligand placement, confirming a sequential, single-electron tunneling mechanism. Next, we chemically fuse two clusters to realize a larger cluster dimer that behaves as a single electronic unit, possessing a smaller reorganization energy and more accessible redox states than the monomeric analogues. As a result, dimer-based devices exhibit significantly higher currents and can even be pushed to current saturation at high bias. Owing to these controllable properties, single-cluster junctions serve as an excellent platform for exploring incoherent charge transport processes at the nanoscale. With this understanding, as well as properties such as nonlinear I-V characteristics and rectification, these molecular clusters may function as conductive inorganic nodes in new devices and materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA