Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 540(7632): 266-269, 2016 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-27919075

RESUMO

Land-use intensification is a major driver of biodiversity loss. Alongside reductions in local species diversity, biotic homogenization at larger spatial scales is of great concern for conservation. Biotic homogenization means a decrease in ß-diversity (the compositional dissimilarity between sites). Most studies have investigated losses in local (α)-diversity and neglected biodiversity loss at larger spatial scales. Studies addressing ß-diversity have focused on single or a few organism groups (for example, ref. 4), and it is thus unknown whether land-use intensification homogenizes communities at different trophic levels, above- and belowground. Here we show that even moderate increases in local land-use intensity (LUI) cause biotic homogenization across microbial, plant and animal groups, both above- and belowground, and that this is largely independent of changes in α-diversity. We analysed a unique grassland biodiversity dataset, with abundances of more than 4,000 species belonging to 12 trophic groups. LUI, and, in particular, high mowing intensity, had consistent effects on ß-diversity across groups, causing a homogenization of soil microbial, fungal pathogen, plant and arthropod communities. These effects were nonlinear and the strongest declines in ß-diversity occurred in the transition from extensively managed to intermediate intensity grassland. LUI tended to reduce local α-diversity in aboveground groups, whereas the α-diversity increased in belowground groups. Correlations between the ß-diversity of different groups, particularly between plants and their consumers, became weaker at high LUI. This suggests a loss of specialist species and is further evidence for biotic homogenization. The consistently negative effects of LUI on landscape-scale biodiversity underscore the high value of extensively managed grasslands for conserving multitrophic biodiversity and ecosystem service provision. Indeed, biotic homogenization rather than local diversity loss could prove to be the most substantial consequence of land-use intensification.


Assuntos
Agricultura , Biodiversidade , Pradaria , Atividades Humanas , Animais , Artrópodes , Aves , Bryopsida , Quirópteros , Conservação dos Recursos Naturais , Conjuntos de Dados como Assunto , Cadeia Alimentar , Fungos , Alemanha , Líquens , Plantas , Microbiologia do Solo , Especificidade da Espécie
2.
Protist ; 169(3): 432-449, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29870898

RESUMO

Protists are among the most diverse and abundant eukaryotes in soil. However, gaps between described and sequenced protist morphospecies still present a pending problem when surveying environmental samples for known species using molecular methods. The number of sequences in the molecular PR2 database (∼130,000) is limited compared to the species richness expected (>1 million protist species) - limiting the recovery rate. This is important, since high throughput sequencing (HTS) methods are used to find associative patterns between functional traits, taxa and environmental parameters. We performed HTS to survey soil flagellates in 150 grasslands of central Europe, and tested the recovery rate of ten previously isolated and cultivated cercomonad species, among locally found diversity. We recovered sequences for reference soil flagellate species, but also a great number of their phylogenetically evaluated genetic variants, among rare and dominant taxa with presumably own biogeography. This was recorded among dominant (cercozoans, Sandona), rare (apusozoans) and a large hidden diversity of predominantly aquatic protists in soil (choanoflagellates, bicosoecids) often forming novel clades associated with uncultured environmental sequences. Evaluating the reads, instead of the OTUs that individual reads are usually clustered into, we discovered that much of this hidden diversity may be lost due to clustering.


Assuntos
Biodiversidade , Cercozoários/classificação , Cercozoários/genética , Solo/parasitologia , Europa (Continente) , Sequenciamento de Nucleotídeos em Larga Escala
3.
Protist ; 169(4): 521-538, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29936291

RESUMO

By measuring the change in soil protist communities, the effect of human land use on grasslands can be monitored to promote sustainable ecosystem functioning. Protists form the active link in the rhizosphere between the plant roots and higher trophic organisms; however, only few morphological species and their ecological values have yet been described in this context. To investigate the communicability between morphological and molecular databases used in the molecular barcoding of protists and in the biomonitoring of grassland soil, the present high-throughput sequencing (HTS) study (N=150) covered the area of central Europe (mesoscale) known to be well studied for ciliated protists. HTS delivered 2,404 unique reads identifying taxa in all major ciliophoran classes but exact reference matches were few. The study identified clear discrepancies between databases for well-studied taxa, where molecular databases contained multiple gene variants for single morphospecies of dominant taxa. Gene variants presented own biogeography - the eukaryotic microdiversity along gradients (e.g., land-use intensity, soil water). It is possible that many of the so called novel phylogenetic lineages and hidden diversity pointed out in environmental surveys could be evidence for the severe lack of molecular data for already known and morphologically described species, present in morphological databases.


Assuntos
Cilióforos/classificação , Bases de Dados Factuais , Pradaria , Microbiologia do Solo , Bases de Dados Factuais/normas , Bases de Dados Genéticas , Europa (Continente) , Sequenciamento de Nucleotídeos em Larga Escala , Tipagem Molecular
4.
Protist ; 168(5): 546-564, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28961455

RESUMO

Genomic data for less than one quarter of ∼1.8 million named species on earth exist in public databases like GenBank. Little information exists on the estimated one million small sized (1-100µm) heterotrophic nanoflagellates and ciliates and their taxa-area relationship. We analyzed environmental DNA from 150 geo-referenced grassland plots representing topographical and land-use ranges typical for Central Europe. High through-put barcoding allowed the identification of operational taxonomic units (OTUs) at species level, with high pairwise identity to reference sequences (≥99.7%), but also the identification of sequences at the genus (≥97%) and class (≥80%) taxonomic level. Species richness analyses revealed, on average, 100 genus level OTUs (332 unique individual read (UIR) and 56 class level OTUs per gram of soil sample in the mesoscale (1-1000km). Database shortfalls were highlighted by increased uncertain taxonomic lineages at lower resolution (≥80% sequence identity). No single barcode occurred ubiquitously across all sites. Taxa-area relationships indicated that OTUs spread over the entire mesoscale were more similar than in the local scale and increased land-use (fertilization, mowing and grazing) promoted taxa-area separation. Only a small fraction of sequences strictly matched reference library sequences, suggesting a large protistan "dark matter" in soil which warrants further research.


Assuntos
Eucariotos/fisiologia , Pradaria , Microbiota , Solo/parasitologia , Código de Barras de DNA Taxonômico , Eucariotos/classificação , Eucariotos/genética , Alemanha , Sequenciamento de Nucleotídeos em Larga Escala , Microbiota/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA