Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Med Phys ; 51(3): 2277-2292, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37991110

RESUMO

BACKGROUND: A Faraday cup (FC) facilitates a quite clean measurement of the proton fluence emerging from clinical spot-scanning nozzles with narrow pencil-beams. The utilization of FCs appears to be an attractive option for high dose rate delivery modes and the source models of Monte-Carlo (MC) dose engines. However, previous studies revealed discrepancies of 3%-6% between reference dosimetry with ionization chambers (ICs) and FC-based dosimetry. This has prevented the widespread use of FCs for dosimetry in proton therapy. PURPOSE: The current study aims at bridging the gap between FC dosimetry and IC dosimetry of proton fields delivered with spot-scanning treatment heads. Particularly, a novel method to evaluate FC measurements is introduced. METHODS: A consistency check is formulated, which makes use of the energy balance and the reciprocity theorem. The measurement data comprise central-axis depth distributions of the absorbed dose of quasi-monochromatic fields with a width of about 28.5 cm and FC measurements of the reciprocal fields with a single spot. These data are complemented by a look-up of energy-range tables, the average Q-value of transmutations, and the escape energy carried away by neutrons and photons. The latter data are computed by MC simulations, which in turn are validated with measurements of the distal dose tail and neutron out-of-field doses. For comparison, the conventional approach of FC evaluation is performed, which computes absorbed dose from the product of fluence and stopping power. The results from the FC measurements are compared with the standard dosimetry protocols and improved reference dosimetry methods. RESULTS: The deviation between the conventional FC-based dosimetry and the IC-based one according to standard dosimetry protocols was -4.7 ( ± $\pm$ 3.3)% for a 100 MeV field and -3.6 ( ± $\pm$ 3.5)% for 200 MeV, thereby agreeing within the reported uncertainties. The deviations could be reduced to -4.0 ( ± $\pm$ 2.9)% and -3.0 ( ± $\pm$ 3.1)% by adopting state-of-the-art reference dosimetry methods. The alternative approach using the energy balance gave deviations of only -1.9% (100 MeV) and -2.6% (200 MeV) using state-of-the-art dosimetry. The standard uncertainty of this novel approach was estimated to be about 2%. CONCLUSIONS: An alternative concept has been established to determine the absorbed dose of monoenergetic proton fields with an FC. It eliminates the strong dependence of the conventional FC-based approach on the MC simulation of the stopping-power and of the secondary ions, which according to the study at hand is the major contributor to the underestimation of the absorbed dose. Some contributions to the uncertainty of the novel approach could potentially be reduced in future studies. This would allow for accurate consistency tests of conventional dosimetry procedures.


Assuntos
Terapia com Prótons , Prótons , Radiometria/métodos , Simulação por Computador , Calibragem , Método de Monte Carlo , Dosagem Radioterapêutica
2.
Med Phys ; 50(4): 2540-2551, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36609847

RESUMO

BACKGROUND: The addition of static or dynamic collimator systems to the pencil beam scanning delivery technique increases the number of options for lateral field shaping. The collimator shape needs to be optimized together with the intensity modulation of spots. PURPOSE: To minimize the proton field's lateral penumbra by investigating the fundamental relations between spot and collimating aperture edge position. METHODS: Analytical approaches describing the effect of spot position on the resulting spot profile are presented. The theoretical description is then compared with Monte Carlo simulations in TOPAS and in the RayStation treatment planning system, as well as with radiochromic film measurements at a clinical proton therapy facility. In the model, one single spot profile is analyzed for various spot positions in air. Further, irradiation setups in water with different energies, the combination with a range shifter, and two-dimensional proton fields were investigated in silico. RESULTS: The further the single spot is placed beyond the collimating aperture edge ('overscanning'), the sharper the relative lateral dose fall-off and thus the lateral penumbra. Overscanning up to 5 mm $5\,\text{mm}$ reduced the lateral penumbra by about 20% on average after a propagation of 13 cm $13\,\text{cm}$ in air. This benefit from overscanning is first predicted by the analytical proofs and later verified by simulations and measurements. Corresponding analyses in water confirm the benefit in lateral penumbra with spot position optimization as observed theoretically and in air. The combination of spot overscanning with fluence modulation facilitated an additional improvement. CONCLUSIONS: The lateral penumbra of single spots in collimated scanned proton fields can be improved by the method of spot overscanning. This suggests a better sparing of proximal organs at risk in smaller water depths at higher energies, especially in the plateau of the depth dose distribution. All in all, spot overscanning in collimated scanned proton fields offers particular potential in combination with techniques such as fluence modulation or dynamic collimation for optimizing the lateral penumbra to spare normal tissue.


Assuntos
Terapia com Prótons , Planejamento da Radioterapia Assistida por Computador , Planejamento da Radioterapia Assistida por Computador/métodos , Prótons , Imagens de Fantasmas , Dosagem Radioterapêutica , Terapia com Prótons/métodos , Método de Monte Carlo , Água
3.
Z Med Phys ; 33(4): 529-541, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36577626

RESUMO

PURPOSE: The primary fluence of a proton pencil beam exiting the accelerator is enveloped by a region of secondaries, commonly called "spray". Although small in magnitude, this spray may affect dose distributions in pencil beam scanning mode e.g., in the calculation of the small field output, if not modelled properly in a treatment planning system (TPS). The purpose of this study was to dosimetrically benchmark the Monte Carlo (MC) dose engine of the RayStation TPS (v.10A) in small proton fields and systematically compare single Gaussian (SG) and double Gaussian (DG) modeling of initial proton fluence providing a more accurate representation of the nozzle spray. METHODS: The initial proton fluence distribution for SG/DG beam modeling was deduced from two-dimensional measurements in air with a scintillation screen with electronic readout. The DG model was either based on direct fits of the two Gaussians to the measured profiles, or by an iterative optimization procedure, which uses the measured profiles to mimic in-air scan-field factor (SF) measurements. To validate the DG beam models SFs, i.e. relative doses to a 10 × 10 cm2 field, were measured in water for three different initial proton energies (100MeV, 160MeV, 226.7MeV) and square field sizes from 1×1cm2 to 10×10cm2 using a small field ionization chamber (IBA CC01) and an IBA ProteusPlus system (universal nozzle). Furthermore, the dose to the center of spherical target volumes (diameters: 1cm to 10cm) was determined using the same small volume ionization chamber (IC). A comprehensive uncertainty analysis was performed, including estimates of influence factors typical for small field dosimetry deduced from a simple two-dimensional analytical model of the relative fluence distribution. Measurements were compared to the predictions of the RayStation TPS. RESULTS: SFs deviated by more than 2% from TPS predictions in all fields <4×4cm2 with a maximum deviation of 5.8% for SG modeling. In contrast, deviations were smaller than 2% for all field-sizes and proton energies when using the directly fitted DG model. The optimized DG model performed similarly except for slightly larger deviations in the 1×1cm2 scan-fields. The uncertainty estimates showed a significant impact of pencil beam size variations (±5%) resulting in up to 5.0% standard uncertainty. The point doses within spherical irradiation volumes deviated from calculations by up to 3.3% for the SG model and 2.0% for the DG model. CONCLUSION: Properly representing nozzle spray in RayStation's MC-based dose engine using a DG beam model was found to reduce the deviation to measurements in small spherical targets to below 2%. A thorough uncertainty analysis shows a similar magnitude for the combined standard uncertainty of such measurements.


Assuntos
Terapia com Prótons , Prótons , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Algoritmos , Terapia com Prótons/métodos , Método de Monte Carlo
4.
Phys Med Biol ; 68(6)2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36821866

RESUMO

Objective. The lateral dose fall-off in proton pencil beam scanning (PBS) technique remains the preferred choice for sparing adjacent organs at risk as opposed to the distal edge due to the proton range uncertainties and potentially high relative biological effectiveness. However, because of the substantial spot size along with the scattering in the air and in the patient, the lateral penumbra in PBS can be degraded. Combining PBS with an aperture can result in a sharper dose fall-off, particularly for shallow targets.Approach. The aim of this work was to characterize the radiation fields produced by collimated and uncollimated 100 and 140 MeV proton beams, using Monte Carlo simulations and measurements with a MiniPIX-Timepix detector. The dose and the linear energy transfer (LET) were then coupled with publishedin silicobiophysical models to elucidate the potential biological effects of collimated and uncollimated fields.Main results. Combining an aperture with PBS reduced the absorbed dose in the lateral fall-off and out-of-field by 60%. However, the results also showed that the absolute frequency-averaged LET (LETF) values increased by a maximum of 3.5 keVµm-1in collimated relative to uncollimated fields, while the dose-averaged LET (LETD) increased by a maximum of 7 keVµm-1. Despite the higher LET values produced by collimated fields, the predicted DNA damage yields remained lower, owing to the large dose reduction.Significance. This work demonstrated the dosimetric advantages of combining an aperture with PBS coupled with lower DNA damage induction. A methodology for calculating dose in water derived from measurements with a silicon-based detector was also presented. This work is the first to demonstrate experimentally the increase in LET caused by combining PBS with aperture, and to assess the potential DNA damage which is the initial step in the cascade of events leading to the majority of radiation-induced biological effects.


Assuntos
Terapia com Prótons , Humanos , Terapia com Prótons/métodos , Prótons , Planejamento da Radioterapia Assistida por Computador/métodos , Dosagem Radioterapêutica , Método de Monte Carlo
5.
Front Oncol ; 13: 1222800, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37795436

RESUMO

Background: In radiotherapy, especially when treating children, minimising exposure of healthy tissue can prevent the development of adverse outcomes, including second cancers. In this study we propose a validated Monte Carlo framework to evaluate the complete patient exposure during paediatric brain cancer treatment. Materials and methods: Organ doses were calculated for treatment of a diffuse midline glioma (50.4 Gy with 1.8 Gy per fraction) on a 5-year-old anthropomorphic phantom with 3D-conformal radiotherapy, intensity modulated radiotherapy (IMRT), volumetric modulated arc therapy (VMAT) and intensity modulated pencil beam scanning (PBS) proton therapy. Doses from computed tomography (CT) for planning and on-board imaging for positioning (kV-cone beam CT and X-ray imaging) accounted for the estimate of the exposure of the patient including imaging therapeutic dose. For dose calculations we used validated Monte Carlo-based tools (PRIMO, TOPAS, PENELOPE), while lifetime attributable risk (LAR) was estimated from dose-response relationships for cancer induction, proposed by Schneider et al. Results: Out-of-field organ dose equivalent data of proton therapy are lower, with doses between 0.6 mSv (testes) and 120 mSv (thyroid), when compared to photon therapy revealing the highest out-of-field doses for IMRT ranging between 43 mSv (testes) and 575 mSv (thyroid). Dose delivered by CT ranged between 0.01 mSv (testes) and 72 mSv (scapula) while a single imaging positioning ranged between 2 µSv (testes) and 1.3 mSv (thyroid) for CBCT and 0.03 µSv (testes) and 48 µSv (scapula) for X-ray. Adding imaging dose from CT and daily CBCT to the therapeutic demonstrated an important contribution of imaging to the overall radiation burden in the course of treatment, which is subsequently used to predict the LAR, for selected organs. Conclusion: The complete patient exposure during paediatric brain cancer treatment was estimated by combining the results from different Monte Carlo-based dosimetry tools, showing that proton therapy allows significant reduction of the out-of-field doses and secondary cancer risk in selected organs.

6.
Med Phys ; 49(1): 666-674, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34855985

RESUMO

PURPOSE: The adequate performance of radiobiological experiments using clinical proton beams typically requires substantial preparations to provide the appropriate setup for specific experiments. Providing radiobiologically interesting low-energy protons is a particular challenge, due to various physical effects that become more pronounced with larger absorber thickness and smaller proton energy. This work demonstrates the generation of decelerated low-energy protons from a clinical proton beam. METHODS: Monte Carlo simulations of proton energy spectra were performed for energy absorbers with varying thicknesses to reduce the energy of the clinical proton beam down to the few-MeV level corresponding to µ m-ranges. In this way, a setup with an optimum thickness of the absorber with a maximum efficiency of the proton fluence for the provisioning of low-energy protons is supposed to be found. For the specific applications of 2.5-3.3 MeV protons and α -particle range equivalent protons, the relative depth dose was measured and simulated together with the dose-averaged linear energy transfer (LETd) distribution. RESULTS: The resulting energy spectra from Monte Carlo simulations indicate an optimal absorber thickness for providing low-energy protons with maximum efficiency of proton fluence at an user-requested energy range for experiments. For instance, providing energies lower than 5 MeV, an energy spectrum with a relative total efficiency of 38.6 % to the initial spectrum was obtained with the optimal setup. The measurements of the depth dose, compared to the Monte Carlo simulations, showed that the dosimetry of low-energy protons works and protons with high LETd down to the range of α -particles can be produced. CONCLUSIONS: This work provides a method for generating all clinically and radiobiologically relevant energies - especially down to the few-MeV level - at one clinical facility with pencil beam scanning. Thereby, it enables radiobiological experiments under environmentally uniform conditions.


Assuntos
Terapia com Prótons , Prótons , Transferência Linear de Energia , Método de Monte Carlo , Radiobiologia
7.
Front Oncol ; 12: 882489, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35756661

RESUMO

Proton therapy enables to deliver highly conformed dose distributions owing to the characteristic Bragg peak and the finite range of protons. However, during proton therapy, secondary neutrons are created, which can travel long distances and deposit dose in out-of-field volumes. This out-of-field absorbed dose needs to be considered for radiation-induced secondary cancers, which are particularly relevant in the case of pediatric treatments. Unfortunately, no method exists in clinics for the computation of the out-of-field dose distributions in proton therapy. To help overcome this limitation, a computational tool has been developed based on the Monte Carlo code TOPAS. The purpose of this work is to evaluate the accuracy of this tool in comparison to experimental data obtained from an anthropomorphic phantom irradiation. An anthropomorphic phantom of a 5-year-old child (ATOM, CIRS) was irradiated for a brain tumor treatment in an IBA Proteus Plus facility using a pencil beam dedicated nozzle. The treatment consisted of three pencil beam scanning fields employing a lucite range shifter. Proton energies ranged from 100 to 165 MeV. A median dose of 50.4 Gy(RBE) with 1.8 Gy(RBE) per fraction was prescribed to the initial planning target volume (PTV), which was located in the cerebellum. Thermoluminescent detectors (TLDs), namely, Li-7-enriched LiF : Mg, Ti (MTS-7) type, were used to detect gamma radiation, which is produced by nuclear reactions, and secondary as well as recoil protons created out-of-field by secondary neutrons. Li-6-enriched LiF : Mg,Cu,P (MCP-6) was combined with Li-7-enriched MCP-7 to measure thermal neutrons. TLDs were calibrated in Co-60 and reported on absorbed dose in water per target dose (µGy/Gy) as well as thermal neutron dose equivalent per target dose (µSv/Gy). Additionally, bubble detectors for personal neutron dosimetry (BD-PND) were used for measuring neutrons (>50 keV), which were calibrated in a Cf-252 neutron beam to report on neutron dose equivalent dose data. The Monte Carlo code TOPAS (version 3.6) was run using a phase-space file containing 1010 histories reaching an average standard statistical uncertainty of less than 0.2% (coverage factor k = 1) on all voxels scoring more than 50% of the maximum dose. The primary beam was modeled following a Fermi-Eyges description of the spot envelope fitted to measurements. For the Monte Carlo simulation, the chemical composition of the tissues represented in ATOM was employed. The dose was tallied as dose-to-water, and data were normalized to the target dose (physical dose) to report on absorbed doses per target dose (mSv/Gy) or neutron dose equivalent per target dose (µSv/Gy), while also an estimate of the total organ dose was provided for a target dose of 50.4 Gy(RBE). Out-of-field doses showed absorbed doses that were 5 to 6 orders of magnitude lower than the target dose. The discrepancy between TLD data and the corresponding scored values in the Monte Carlo calculations involving proton and gamma contributions was on average 18%. The comparison between the neutron equivalent doses between the Monte Carlo simulation and the measured neutron doses was on average 8%. Organ dose calculations revealed the highest dose for the thyroid, which was 120 mSv, while other organ doses ranged from 18 mSv in the lungs to 0.6 mSv in the testes. The proposed computational method for routine calculation of the out-of-the-field dose in proton therapy produces results that are compatible with the experimental data and allow to calculate out-of-field organ doses during proton therapy.

8.
Med Phys ; 48(6): 3186-3199, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33772808

RESUMO

BACKGROUND AND PURPOSE: Monte Carlo simulations as well as analytical computations of proton transport in material media require accurate values of multiple Coulomb scattering (MCS) angles. High-quality experimental data on MCS angles in the energy range for proton therapy are, however, sparse. In this work, MCS modeling in proton transport was evaluated employing an experimental method to measure these angles on a medical proton beamline in clinically relevant materials. Results are compared to Monte Carlo simulations and analytical models. MATERIALS AND METHODS: Aluminum, brass, and lucite (PMMA) scatterers of clinically relevant thicknesses were irradiated with protons at 100, 160, and 220 MeV. Resulting spatial distributions of individual pencil beams were measured with a scintillating screen. The MCS angles were determined by deconvolution and a virtual point source approach. Results were compared to those obtained with the Monte Carlo codes PENH, TOPAS, and RayStation Monte Carlo, as well as the analytical models RayStation Pencil Beam Algorithm and the Molière/Fano/Hanson variant of the Molière theory. RESULTS: Experimental data obtained with the presented methodology agree with previously published results within 6%, with an average deviation of 3%. The combined average uncertainty of the experimental data yielded 1.8%, while the combined maximum uncertainty was below 4%. The obtained Monte Carlo results for PENH, TOPAS, and RayStation deviate on average for all considered energies, materials and thicknesses, by 2.5%, 3.4%, and 2.8% from the experimental data, respectively. For the analytical models, the average deviations amount to 4.5% and 2.9% for the RayStation Pencil Beam Algorithm and the Molière/Fano/Hanson model, respectively. CONCLUSION: The experimental method developed for the present work allowed to measure MCS angles in clinical proton facilities with good accuracy. The presented method permits to extend the database on experimental MCS angles which is rather limited. This work further provides benchmark data for lucite in thicknesses relevant for clinical applications. The data may serve to validate dose engines of treatment planning systems and secondary dose check software. The Monte Carlo and analytical algorithms studied are capable of reproducing MCS data within the required accuracy for clinical applications.


Assuntos
Terapia com Prótons , Prótons , Algoritmos , Método de Monte Carlo , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
9.
Med Phys ; 48(1): 456-476, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33217026

RESUMO

BACKGROUND AND PURPOSE: PENH is a recently coded module for simulation of proton transport in conjunction with the Monte Carlo code PENELOPE. PENELOPE applies class II simulation to all type of interactions, in particular, to elastic collisions. PENH uses calculated differential cross sections for proton elastic collisions that include electron screening effects as well as nuclear structure effects. Proton-induced nuclear reactions are simulated from information in the ENDF-6 database or from alternative nuclear databases in ENDF format. The purpose of this work is to benchmark this module by simulating absorbed dose distributions from a single finite spot size proton pencil beam in water. MATERIALS AND METHODS: Monte Carlo simulations with PENH are compared with simulation results from TOPAS Monte Carlo (v3.1p2) and RayStation Monte Carlo (v6). Different beam models are examined in terms of mean energy and energy spread to match the measured profiles. The phase-space file is derived from experimental measurements. Simulated absorbed dose distributions are compared to experimental data obtained with the ionization chamber array MatriXX 2D detector (IBA Dosimetry) in a water tank. The experiments were conducted with a clinical IBA pencil beam scanning dedicated nozzle. In all simulations a Fermi-Eyges phase-space representation of a single finite spot size proton pencil beam is used. RESULTS: In general, there is a good agreement between simulated results and experimental data up to a distance of 3 cm from the central axis. In the core region (region where the dose is more than 10% of the maximum dose) PENH shows, overall, the smallest deviations from experimental data, with the largest radial rms (root mean square) smaller than 0.2. The results achieved by TOPAS and RayStation in that region are very close to those of PENH. For the halo region, that is the area of the dose distribution outside the core region reaching down to 0.01% of the maximum intensity, the largest rms achieved by TOPAS is always smaller than 0.5, yielding better results than the rest of the codes. CONCLUSION: The physics modeling of the PENELOPE/PENH code yields results consistent with measurements in the dose range relevant for proton therapy. The discrepancies between PENH appearing at distances larger than 3 cm from the central-beam axis are accountable to the lack of neutron simulation in this code. In contradistinction, TOPAS has a better agreement with experimental data at large distances from the central-beam axis because of the simulation of neutrons.


Assuntos
Terapia com Prótons , Prótons , Benchmarking , Método de Monte Carlo , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
10.
Phys Med Biol ; 63(11): 115013, 2018 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-29737969

RESUMO

Monte Carlo (MC) calculations are a fundamental tool for the investigation of ionization chambers (ICs) in radiation fields, and for calculations in the scope of IC reference dosimetry. Geant4, as used for the toolkit TOPAS, is a major general purpose code, generally suitable for investigating ICs in primary proton beams. To provide reliable results, the impact of parameter settings and the limitations of the underlying condensed history (CH) algorithm need to be known. A Fano cavity test was implemented in Geant4 (10.03.p1) for protons, based on the existing version for electrons distributed with the Geant4 release. This self-consistent test allows the calculation to be compared with the expected result for the typical IC-like geometry of an air-filled cavity surrounded by a higher density material. Various user-selectable parameters of the CH implementation in the EMStandardOpt4 physics-list were tested for incident proton energies between 30 and 250 MeV. Using TOPAS (3.1.p1) the influence of production cuts was investigated for bare air-cavities in water, irradiated by primary protons. Detailed IC geometries for an NACP-02 plane-parallel chamber and an NE2571 Farmer-chamber were created. The overall factor f Q as a ratio between the dose-to-water and dose to the sensitive air-volume was calculated for incident proton energies between 70 and 250 MeV. The Fano test demonstrated the EMStandardOpt4 physics-list with the WentzelIV multiple scattering model as appropriate for IC calculations. If protons start perpendicular to the air cavity, no further step-size limitations are required to pass the test within 0.1%. For an isotropic source, limitations of the maximum step length within the air cavity and its surrounding as well as a limitation of the maximum fractional energy loss per step were required to pass within 0.2%. A production cut of ⩽5 µm or ∼15 keV for all particles yielded a constant result for f Q of bare air-filled cavities. The overall factor f Q for the detailed NACP-02 and NE2571 chamber models calculated with TOPAS agreed with the values of Gomà et al (2016 Phys. Med. Biol. 61 2389) within statistical uncertainties (1σ) of <0.3% for almost all energies with a maximum deviation of 0.6% at 250 MeV for the NE2571. The selection of hadronic scattering models (QGSP_BIC versus QGSP_BERT) in TOPAS impacted the results at the highest energies by 0.3% ± 0.1%. Based on the Fano cavity test, the Geant4/TOPAS Monte Carlo code, in its investigated version, can provide reliable results for IC calculations. Agreement with the detailed IC models and the published values of Gomà et al can be achieved when production cuts are reduced from the TOPAS default values. The calculations confirm the reported agreement of Gomà et al for [Formula: see text] with IAEA-TRS398 values within the given uncertainties. An additional uncertainty for the MC-calculated [Formula: see text] of ∼0.3% by hadronic interaction models should be considered.


Assuntos
Aceleradores de Partículas , Terapia com Prótons/instrumentação , Prótons , Método de Monte Carlo , Terapia com Prótons/métodos , Radiometria/métodos , Dosagem Radioterapêutica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA