Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Am J Physiol Regul Integr Comp Physiol ; 318(1): R1-R16, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31577477

RESUMO

This study explored the hypothesis that late gestational reduction of corticosteroids transforms the cerebrovasculature and modulates postnatal vulnerability to mild hypoxic-ischemic (HI) injury. Four groups of Sprague-Dawley neonates were studied: 1) Sham-Control, 2) Sham-MET, 3) HI-Control, and 4) HI-MET. Metyrapone (MET), a corticosteroid synthesis inhibitor, was administered via drinking water from gestational day 11 to term. In Shams, MET administration 1) decreased reactivity of the hypothalamic-pituitary-adrenal (HPA) axis to surgical trauma in postnatal day 9 (P9) pups by 37%, 2) promoted cerebrovascular contractile differentiation in middle cerebral arteries (MCAs), 3) decreased compliance ≤46% and increased depolarization-induced calcium mobilization in MCAs by 28%, 4) mildly increased hemispheric cerebral edema by 5%, decreased neuronal degeneration by 66%, and increased astroglial and microglial activation by 10- and 4-fold, respectively, and 5) increased righting reflex times by 29%. Regarding HI, metyrapone-induced fetal transformation 1) diminished reactivity of the HPA axis to HI-induced stress in P9/P10 pups, 2) enhanced HI-induced contractile dedifferentiation in MCAs, 3) lessened the effects of HI on MCA compliance and calcium mobilization, 4) decreased HI-induced neuronal injury but unmasked regional HI-induced depression of microglial activation, and 5) attenuated the negative effects of HI on open-field exploration but enhanced the detrimental effects of HI on negative geotaxis responses by 79%. Overall, corticosteroids during gestation appear essential for normal cerebrovascular development and glial quiescence but induce persistent changes that in neonates manifest beneficially as preservation of postischemic contractile differentiation but detrimentally as worsened ischemic cerebrovascular compliance, increased ischemic neuronal injury, and compromised neurobehavior.


Assuntos
Transtornos Cerebrovasculares/tratamento farmacológico , Piridinas/farmacologia , Animais , Animais Recém-Nascidos , Artérias Carótidas , Feminino , Hipóxia , Hipóxia-Isquemia Encefálica/tratamento farmacológico , Hipóxia-Isquemia Encefálica/prevenção & controle , Ligadura , Gravidez , Cuidado Pré-Natal , Piridinas/uso terapêutico , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA