Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Chemistry ; 30(35): e202401288, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38634697

RESUMO

Breakdown of chlorophyll (Chl), as studied in angiosperms, follows the pheophorbide a oxygenase/phyllobilin (PaO/PB) pathway, furnishing linear tetrapyrroles, named phyllobilins (PBs). In an investigation with fern leaves we have discovered iso-phyllobilanones (iPBs) with an intriguingly rearranged and oxidized carbon skeleton. We report here a key second group of iPBs from the fern and on their structure analysis. Previously, these additional Chl-catabolites escaped their characterization, since they exist in aqueous media as mixtures of equilibrating isomers. However, their chemical dehydration furnished stable iPB-derivatives that allowed the delineation of the enigmatic structures and chemistry of the original natural catabolites. The structures of all fern-iPBs reflect the early core steps of a PaO/PB-type pathway and the PB-to-iPB carbon skeleton rearrangement. A striking further degradative chemical ring-cleavage was observed, proposed to consume singlet molecular oxygen (1O2). Hence, Chl-catabolites may play a novel active role in detoxifying cellular 1O2. The critical deviations from the PaO/PB pathway, found in the fern, reflect evolutionary developments of Chl-breakdown in the green plants in the Paleozoic era.


Assuntos
Clorofila , Gleiquênias , Clorofila/química , Gleiquênias/química , Tetrapirróis/química , Folhas de Planta/química , Folhas de Planta/metabolismo , Oxigênio Singlete/química
2.
Angew Chem Int Ed Engl ; 57(45): 14937-14941, 2018 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-30144281

RESUMO

All structure-based information on chlorophyll (Chl) breakdown in the higher plants relies on studies with angiosperms. Herein, the first investigation of a fern is reported, revealing a novel type of Chl catabolites (phyllobilins) in leaves of this large division of the vascular plants, and providing structural insights into an astounding metabolic process of the higher plants that appears to have played a role even in early phases of plant evolution. The tetrapyrrolic Chl catabolites in the cosmopolitan bracken fern were discovered to be phyllobilin isomers with an unprecedented skeleton, proposed to be the striking result of a rearrangement of a hypothetical phyllobilin precursor.


Assuntos
Clorofila/metabolismo , Gleiquênias/metabolismo , Folhas de Planta/metabolismo , Carbono/química , Carbono/metabolismo , Clorofila/química , Gleiquênias/química , Isomerismo , Folhas de Planta/química , Tetrapirróis/química , Tetrapirróis/metabolismo
3.
Int J Mass Spectrom ; 365-366: 48-55, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25844050

RESUMO

The hyphenation of high performance chromatography with modern mass spectrometric techniques providing high-resolution data as well as structural information from MS/MS experiments has become a versatile tool for rapid natural product identification and characterization. A recent application of this methodology concerned the investigation of the annually occurring degradation of green plant pigments. Since the first structural elucidation of a breakdown product in the early 1990s, a number of similarly structured, tetrapyrrolic catabolites have been discovered with the help of chromatographic, spectroscopic and spectrometric methods. A prerequisite for a satisfactory, manually operated or database supported analysis of mass spectrometric fragmentation patterns is a deeper knowledge of the underlying gas phase chemistry. Still, a thorough investigation of the common fragmentation behavior of these ubiquitous, naturally occurring chlorophyll breakdown products is lacking. This study closes the gap and gives a comprehensive overview of collision-induced fragmentation reactions of a tetrapyrrolic nonfluorescent chlorophyll catabolite, which is intended to serve as a model compound for the substance class of phyllobilins.

4.
mBio ; 7(6)2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27803184

RESUMO

Histone deacetylases (HDACs) remove acetyl moieties from lysine residues at histone tails and nuclear regulatory proteins and thus significantly impact chromatin remodeling and transcriptional regulation in eukaryotes. In recent years, HDACs of filamentous fungi were found to be decisive regulators of genes involved in pathogenicity and the production of important fungal metabolites such as antibiotics and toxins. Here we present proof that one of these enzymes, the class 1 type HDAC RpdA, is of vital importance for the opportunistic human pathogen Aspergillus fumigatus Recombinant expression of inactivated RpdA shows that loss of catalytic activity is responsible for the lethal phenotype of Aspergillus RpdA null mutants. Furthermore, we demonstrate that a fungus-specific C-terminal region of only a few acidic amino acids is required for both the nuclear localization and catalytic activity of the enzyme in the model organism Aspergillus nidulans Since strains with single or multiple deletions of other classical HDACs revealed no or only moderate growth deficiencies, it is highly probable that the significant delay of germination and the growth defects observed in strains growing under the HDAC inhibitor trichostatin A are caused primarily by inhibition of catalytic RpdA activity. Indeed, even at low nanomolar concentrations of the inhibitor, the catalytic activity of purified RpdA is considerably diminished. Considering these results, RpdA with its fungus-specific motif represents a promising target for novel HDAC inhibitors that, in addition to their increasing impact as anticancer drugs, might gain in importance as antifungals against life-threatening invasive infections, apart from or in combination with classical antifungal therapy regimes. IMPORTANCE: This paper reports on the fungal histone deacetylase RpdA and its importance for the viability of the fungal pathogen Aspergillus fumigatus and other filamentous fungi, a finding that is without precedent in other eukaryotic pathogens. Our data clearly indicate that loss of RpdA activity, as well as depletion of the enzyme in the nucleus, results in lethality of the corresponding Aspergillus mutants. Interestingly, both catalytic activity and proper cellular localization depend on the presence of an acidic motif within the C terminus of RpdA-type enzymes of filamentous fungi that is missing from the homologous proteins of yeasts and higher eukaryotes. The pivotal role, together with the fungus-specific features, turns RpdA into a promising antifungal target of histone deacetylase inhibitors, a class of molecules that is successfully used for the treatment of certain types of cancer. Indeed, some of these inhibitors significantly delay the germination and growth of different filamentous fungi via inhibition of RpdA. Upcoming analyses of clinically approved and novel inhibitors will elucidate their therapeutic potential as new agents for the therapy of invasive fungal infections-an interesting aspect in light of the rising resistance of fungal pathogens to conventional therapies.


Assuntos
Aspergillus fumigatus/enzimologia , Cromatina/metabolismo , Regulação Fúngica da Expressão Gênica , Genes Essenciais , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Viabilidade Microbiana , Antifúngicos/farmacologia , Aspergillus fumigatus/genética , Aspergillus fumigatus/fisiologia , Aspergillus nidulans/enzimologia , Aspergillus nidulans/fisiologia , Ácidos Hidroxâmicos/farmacologia
5.
J Am Soc Mass Spectrom ; 25(8): 1498-501, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24894842

RESUMO

The key step in high quality microbial matrix-assisted laser desorption/ionization mass spectrometry imaging (microbial MALDI MSI) is the fabrication of a homogeneous matrix coating showing a fine-grained morphology. This application note addresses a novel method to apply solid MALDI matrices onto microbial cultures grown on thin agar media. A suspension of a mixture of 2,5-DHB and α-CHCA is sprayed onto the agar sample surface to form highly homogeneous matrix coatings. As a result, the signal intensities of metabolites secreted by the fungus Aspergillus fumigatus were found to be clearly enhanced.


Assuntos
Aspergillus fumigatus/metabolismo , Ácidos Cumáricos/química , Gentisatos/química , Indicadores e Reagentes/química , Imagem Molecular/métodos , Acetatos/química , Aspergillus fumigatus/crescimento & desenvolvimento , Clorofórmio/química , Cloreto de Metileno/química , Microscopia de Fluorescência , Tamanho da Partícula , Propionatos , Solventes/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas em Tandem , Volatilização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA