Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Bases de dados
Assunto principal
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(9)2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38733046

RESUMO

Incorrect sitting posture, characterized by asymmetrical or uneven positioning of the body, often leads to spinal misalignment and muscle tone imbalance. The prolonged maintenance of such postures can adversely impact well-being and contribute to the development of spinal deformities and musculoskeletal disorders. In response, smart sensing chairs equipped with cutting-edge sensor technologies have been introduced as a viable solution for the real-time detection, classification, and monitoring of sitting postures, aiming to mitigate the risk of musculoskeletal disorders and promote overall health. This comprehensive literature review evaluates the current body of research on smart sensing chairs, with a specific focus on the strategies used for posture detection and classification and the effectiveness of different sensor technologies. A meticulous search across MDPI, IEEE, Google Scholar, Scopus, and PubMed databases yielded 39 pertinent studies that utilized non-invasive methods for posture monitoring. The analysis revealed that Force Sensing Resistors (FSRs) are the predominant sensors utilized for posture detection, whereas Convolutional Neural Networks (CNNs) and Artificial Neural Networks (ANNs) are the leading machine learning models for posture classification. However, it was observed that CNNs and ANNs do not outperform traditional statistical models in terms of classification accuracy due to the constrained size and lack of diversity within training datasets. These datasets often fail to comprehensively represent the array of human body shapes and musculoskeletal configurations. Moreover, this review identifies a significant gap in the evaluation of user feedback mechanisms, essential for alerting users to their sitting posture and facilitating corrective adjustments.


Assuntos
Postura Sentada , Humanos , Redes Neurais de Computação , Monitorização Fisiológica/métodos , Monitorização Fisiológica/instrumentação , Postura/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA