Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Curr Microbiol ; 81(8): 233, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38904756

RESUMO

The study focuses on the in silico genomic characterization of Sphingobium indicum B90A, revealing a wealth of genes involved in stress response, carbon monoxide oxidation, ß-carotene biosynthesis, heavy metal resistance, and aromatic compound degradation, suggesting its potential as a bioremediation agent. Furthermore, genomic adaptations among nine Sphingomonad strains were explored, highlighting shared core genes via pangenome analysis, including those related to the shikimate pathway and heavy metal resistance. The majority of genes associated with aromatic compound degradation, heavy metal resistance, and stress response were found within genomic islands across all strains. Sphingobium indicum UT26S exhibited the highest number of genomic islands, while Sphingopyxis alaskensis RB2256 had the maximum fraction of its genome covered by genomic islands. The distribution of lin genes varied among the strains, indicating diverse genetic responses to environmental pressures. Additionally, in silico evidence of horizontal gene transfer (HGT) between plasmids pSRL3 and pISP3 of the Sphingobium and Sphingomonas genera, respectively, has been provided. The manuscript offers novel insights into strain B90A, highlighting its role in horizontal gene transfer and refining evolutionary relationships among Sphingomonad strains. The discovery of stress response genes and the czcABCD operon emphasizes the potential of Sphingomonads in consortia development, supported by genomic island analysis.


Assuntos
Biodegradação Ambiental , Simulação por Computador , Genoma Bacteriano , Hexaclorocicloexano , Filogenia , Sphingomonadaceae , Sphingomonadaceae/genética , Sphingomonadaceae/metabolismo , Sphingomonadaceae/classificação , Hexaclorocicloexano/metabolismo , Ilhas Genômicas , Transferência Genética Horizontal
2.
Indian J Microbiol ; 62(3): 323-337, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35974919

RESUMO

A rigorous exploration of microbial diversity has revealed its presence on Earth, deep oceans, and vast space. The presence of microbial life in diverse environmental conditions, ranging from moderate to extreme temperature, pH, salinity, oxygen, radiations, and altitudes, has provided the necessary impetus to search for them by extending the limits of their habitats. Microbiology started as a distinct science in the mid-nineteenth century and has provided inputs for the betterment of mankind during the last 150 years. As beneficial microbes are assets and pathogens are detrimental, studying both have its own merits. Scientists are nowadays working on illustrating the microbial dynamics in Earth's subsurface, deep sea, and polar regions. In addition to studying the role of microbes in the environment, the microbe-host interactions in humans, animals and plants are also unearthing newer insights that can help us to improve the health of the host by modulating the microbiota. Microbes have the potential to remediate persistent organic pollutants. Antimicrobial resistance which is a serious concern can also be tackled only after monitoring the spread of resistant microbes using disciplines of genomics and metagenomics The cognizance of microbiology has reached the top of the world. Space Missions are now looking for signs of life on the planets (specifically Mars), the Moon and beyond them. Among the most potent pieces of evidence to support the existence of life is to look for microbial, plant, and animal fossils. There is also an urgent need to deliberate and communicate these findings to layman and policymakers that would help them to take an adequate decision for better health and the environment around us. Here, we present a glimpse of recent advancements by scientists from around the world, exploring and exploiting microbial diversity.

3.
Artigo em Inglês | MEDLINE | ID: mdl-34236299

RESUMO

Deinococcus species are widely studied due to their utility in bioremediation of sites contaminated with radioactive elements. In the present study, we re-evaluated the taxonomic placement of two species of the genus Deinococcus namely D. swuensis DY59T and D. radiopugnans ATCC 19172T based on whole genome analyses. The 16S rRNA gene analysis revealed a 99.58% sequence similarity between this species pair that is above the recommended threshold value for species delineation. These two species also clustered together in both the 16S rRNA gene and core genome based phylogenies depicting their close relatedness. Furthermore, more than 98% of genes were shared between D. swuensis DY59T and D. radiopugnans ATCC 19172T. Interestingly, D. swuensis DY59T and D. radiopugnans ATCC 19172T shared high genome similarity in different genomic indices. They displayed an average nucleotide identity value of 97.63%, an average amino acid identity value of 97% and a digital DNA-DNA hybridization value equal to 79.50%, all of which are well above the cut-off for species delineation. Altogether, based on these evidences, D. swuensis DY59T and D. radiopugnans ATCC 19172T constitute a single species. Hence, as per the priority of publication, we propose that Deinococcus swuensis Lee et al. 2015 should be reclassified as a later heterotypic synonym of Deinococcus radiopugnans.


Assuntos
Deinococcus/classificação , Filogenia , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Genômica , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
4.
Genomics ; 112(3): 2572-2582, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32057914

RESUMO

The present study reports the functional annotation of complete genome of methylotrophic bacterium Paracoccus sp. strain AK26. The 3.6 Mb genome with average GC content of 65.7% was distributed across five replicons; including chromosome (2.7 Mb) and four extrachromosomal replicons pAK1 (471Kb), pAK2 (189Kb), pAK3 (129Kb) and pAK4 (84 Kb). Interestingly, nearly 23% of the Cluster of Orthologous Group (COG) of proteins were annotated on extrachromosomal replicons and 185Kb genome content was attributed to segregated 19 genomic island regions. Among the four replicons, pAK4 was identified as essential and integral part of the genome, as supported by codon usage, GC content (66%) and synteny analysis. Comparative genome analysis for methylotrophy showed mechanistic variations in oxidation and assimilation of C1 compounds among closely related Paracoccus spp. Collectively, present study reports the functional characterization and genomic architecture of strain AK26 and provides genetic basis for quinone and isoprenoid based secondary metabolites synthesis using strain AK26.


Assuntos
Genoma Bacteriano , Paracoccus/genética , Proteínas de Bactérias/genética , Carbono/metabolismo , Cromossomos Bacterianos , Regulação Bacteriana da Expressão Gênica , Redes Reguladoras de Genes , Paracoccus/metabolismo , Plasmídeos/genética , Replicon , Estresse Fisiológico/genética
5.
Genomics ; 112(5): 3191-3200, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32512145

RESUMO

The genus Bacillus constitutes a plethora of species that have medical, environmental, and industrial applications. While genus Bacillus has been the focus of several studies where genomic data have been used to resolve many taxonomic issues, there still exist several ambiguities. Through the use of in-silico genome-based methods, we tried to resolve the taxonomic anomalies of a large set of Bacillus genomes (n = 178). We also proposed species names for uncharacterized strains and reported genome sequence of a novel isolate Bacillus sp. RL. In the hierarchical clustering on genome-to-genome distances, we observed 11 distinct monophyletic clusters and investigated the functional pathways annotated as the property of these clusters and core-gene content of the entire dataset. Thus, we were able to assert the possible outlier strains (n = 17) for this genus. Analyses of secondary metabolite potential of each strain helped us unravel still unexplored diversity for various biosynthetic genes.


Assuntos
Bacillus/genética , Genoma Bacteriano , Animais , Bacillus/classificação , Bacillus/isolamento & purificação , Bacillus/metabolismo , Bovinos , Genômica , Filogenia , Metabolismo Secundário/genética
6.
Genomics ; 112(2): 1956-1969, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31740292

RESUMO

Members of genus Sphingopyxis are known to thrive in diverse environments. Genomes of 21 Sphingopyxis strains were selected. Phylogenetic analysis was performed using GGDC, AAI and core-SNP showed agreement at sub-species level. Based on our results, we propose that both S. baekryungensis DSM16222 and Sphingopyxis sp. LPB0140 strains should not be included under genus Sphingopyxis. Core-analysis revealed, 1422 genes were shared which included essential pathways and genes for conferring adaptation against stress environment. Polyhydroxybutyrate degradation, anaerobic respiration, type IV secretion were notable abundant pathways and exopolysaccharide, hyaluronic acid production and toxin-antitoxin system were differentially present families. Interestingly, genome of S. witflariensis DSM14551, Sphingopyxis sp. MG and Sphingopyxis sp. FD7 provided a hint of probable pathogenic abilities. Protein-Protein Interactome depicted that membrane proteins and stress response has close integration with core-proteins while aromatic compounds degradation and virulence ability formed a separate network. Thus, these should be considered as strain specific attributes.


Assuntos
Genoma Bacteriano , Sphingomonadaceae/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Filogenia , Mapas de Interação de Proteínas , Sphingomonadaceae/classificação , Sphingomonadaceae/metabolismo , Estresse Fisiológico , Sistemas Toxina-Antitoxina
7.
Indian J Microbiol ; 60(4): 405-419, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33087991

RESUMO

Gut microbes play prime role in human health and have shown to exert their influence on various physiological responses including neurological functions. Growing evidences in recent years have indicated a key role of gut microbiota in contributing to mental health. The connection between gut and brain is modulated by microbes via neural, neuroendocrinal and metabolic pathways that are mediated through various neurotransmitters and their precursors, hormones, cytokines and bioactive metabolites. Impaired functioning of this connection can lead to manifestation of mental disorders. Around 1 billion of the world population is reported to suffer from emotional, psychological and neurological imbalances, substance use disorders and cognitive, psychosocial and intellectual disabilities. Thus, it becomes imperative to understand the role of gut microbes in mental disorders. Since variations occur in the conditions associated with different mental disorders and some of them have overlapping symptoms, it becomes important to have a holistic understanding of gut dysbiosis in these disorders. In this review, we consolidate the recent data on alterations in the gut microbes and its consequences in various neurological, psychological and neurodegenerative disorders. Further, considering these evidences, several studies have been undertaken to specifically target the gut microbiota through different therapeutic interventions including administration of live microbes (psychobiotics) to treat mental health disorders and/or their symptoms. We review these studies and propose that an integrative and personalized approach, where combinations of microbe-based therapeutic interventions to modulate gut microbes and in-use psychological treatment practices can be integrated and based on patient's gut microbiome can be potentially adopted for effective treatment of the mental disorders.

8.
Antonie Van Leeuwenhoek ; 110(10): 1357-1371, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28831610

RESUMO

The current prokaryotic taxonomy classifies phenotypically and genotypically diverse microorganisms using a polyphasic approach. With advances in the next-generation sequencing technologies and computational tools for analysis of genomes, the traditional polyphasic method is complemented with genomic data to delineate and classify bacterial genera and species as an alternative to cumbersome and error-prone laboratory tests. This review discusses the applications of sequence-based tools and techniques for bacterial classification and provides a scheme for more robust and reproducible bacterial classification based on genomic data. The present review highlights promising tools and techniques such as ortho-Average Nucleotide Identity, Genome to Genome Distance Calculator and Multi Locus Sequence Analysis, which can be validly employed for characterizing novel microorganisms and assessing phylogenetic relationships. In addition, the review discusses the possibility of employing metagenomic data to assess the phylogenetic associations of uncultured microorganisms. Through this article, we present a review of genomic approaches that can be included in the scheme of taxonomy of bacteria and archaea based on computational and in silico advances to boost the credibility of taxonomic classification in this genomic era.


Assuntos
Archaea/classificação , Bactérias/classificação , Técnicas de Tipagem Bacteriana , Biologia Computacional , Genômica , Genoma Arqueal/genética , Genoma Bacteriano/genética , Metagenoma , Anotação de Sequência Molecular , Filogenia
9.
Int J Syst Evol Microbiol ; 66(4): 1851-1856, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26869334

RESUMO

A Gram-stain-negative, aerobic, rod-shaped, non-spore-forming, yellow pigmented bacterial strain (UM1T) was isolated from the hexachlorocyclohexane (HCH)-contaminated dumpsite located at Ummari village in Lucknow, India. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain UM1T belongs to the genus Luteimonas with Luteimonas aestuarii B9T as the closest neighbour (97.2% 16S rRNA gene sequence similarity). The DNA G+C content of strain UM1T was 64.3 mol%. The major polar lipids were diphosphatidylglycerol (DPG), phosphatidylethanolamine (PE) and phosphatidylglycerol (PG). Main fatty acids were iso-C15:0, iso-C11:0, iso-C11:0 3-OH, iso-C17:0 and summed feature 9 (C16:0 10-methyl and/or iso-C17:1ω9c). Ubiquinone (Q-8) was the only respiratory quinone. Spermidine was detected as the major polyamine. The DNA-DNA relatedness value of strain UM1T with respect to its closest neighbour Luteimonas aestuarii B9T was well below 70 % (∼49%). Thus, data obtained from phylogenetic analysis, DNA-DNA hybridization, and chemotaxonomical and biochemical analyses supports classification of strain UM1T as representative of a novel species of the genus Luteimonas, for which the name Luteimonas tolerans sp. nov. is proposed. The type strain is UM1T (=DSM 28473T=MCC 2572T=KCTC 42936T).


Assuntos
Hexaclorocicloexano , Filogenia , Microbiologia do Solo , Poluentes do Solo , Xanthomonadaceae/classificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Índia , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Espermidina/química , Ubiquinona/química , Xanthomonadaceae/genética , Xanthomonadaceae/isolamento & purificação
12.
Int J Syst Evol Microbiol ; 65(10): 3720-3726, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26219279

RESUMO

A Gram-negative-staining, aerobic, non-motile, non-spore-forming, rod-shaped and yellow-pigmented bacterium, designated R11HT, was isolated from a soil sample collected from a hexachlorocyclohexane dumpsite located at Ummari village, Lucknow, Uttar Pradesh, India. The 16S rRNA gene sequence similarity between strain R11HT and the type strains of species of genus Sphingopyxis with validly published names ranged from 93.75 to 97.85 %. Strain R11HT showed the highest 16S rRNA gene sequence similarity to Sphingopyxis indica DS15T (97.85 %), followed by Sphingopyxis soli JCM15910T (97.79 %), Sphingopyxis ginsengisoli KCTC 12582T (97.77 %) and Sphingopyxis panaciterrulae KCTC 22112T (97.34 %). The DNA G+C content of strain R11HT was 63.5 mol%. DNA-DNA relatedness between strain R11HT and its closest phylogenetic neighbours was well below the threshold value of 70 %, which suggested that strain R11HT represents a novel species of the genus Sphingopyxis. The major polar lipids of strain R11HT were sphingoglycolipid and other lipids commonly reported in this genus, phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylcholine, phosphatidylglycerol and phosphatidylmonomethylethanolamine. Spermidine was detected as the major polyamine. The chemotaxonomic markers in strain R11HT confirmed its classification in the genus Sphingopyxis, i.e. Q-10 as the major ubiquinone and summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c), summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c), C16 : 0 and C14 : 0 2-OH as the predominant fatty acids. Results obtained from DNA-DNA hybridization and chemotaxonomic and phenotypic analyses clearly distinguished strain R11HT from its closest phylogenetic neighbours. Thus, strain R11HT represents a novel species of the genus Sphingopyxis, for which the name Sphingopyxis flava sp. nov. is proposed. The type strain is R11HT ( = DSM 28472T = MCC 2778T).


Assuntos
Hexaclorocicloexano/análise , Filogenia , Microbiologia do Solo , Sphingomonadaceae/classificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Índia , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , Fosfolipídeos/química , Pigmentação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Poluentes do Solo/análise , Espermidina/química , Sphingomonadaceae/genética , Sphingomonadaceae/isolamento & purificação , Ubiquinona/análogos & derivados , Ubiquinona/química
13.
Int J Syst Evol Microbiol ; 65(Pt 1): 129-134, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25298380

RESUMO

Strain RK1(T), a Gram-stain-negative, non-spore-forming, rod-shaped, non-motile bacterium was isolated from a hexachlorocyclohexane (HCH) dumpsite, Lucknow, India. 16S rRNA gene sequence analysis revealed that strain RK1(T) belongs to the family Sphingobacteriaceae and showed highest sequence similarity to Parapedobacter koreensis Jip14(T) (95.63%). The major cellular fatty acids of strain RK1(T) were iso-C15:0, summed feature 3 (C16:1ω7c and/or C16:1ω6c), iso-C17:0 3-OH, summed feature 9 (10-methyl C16:0 and/or iso-C17:1ω9c), iso-C15:0 3-OH and C16 : 0. The major respiratory pigment and polyamine of RK1(T) were menaquinone (MK-7) and homospermidine, respectively. The main polar lipids were phosphatidylethanolamine and sphingolipid. The G+C content of the DNA was 44.5 mol%. The results of physiological and biochemical tests and 16S rRNA sequence analysis clearly demonstrated that strain RK1(T) represents a novel species of the genus Parapedobacter, for which the name Parapedobacter indicus sp. nov. is proposed. The type strain is RK1(T) ( = DSM 28470(T) =MCC 2546(T)).


Assuntos
Bacteroidetes/classificação , Filogenia , Microbiologia do Solo , Técnicas de Tipagem Bacteriana , Bacteroidetes/genética , Bacteroidetes/isolamento & purificação , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Hexaclorocicloexano/análise , Índia , Dados de Sequência Molecular , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Poluentes do Solo/análise , Espermidina/química , Vitamina K 2/análogos & derivados , Vitamina K 2/química
14.
BMC Genomics ; 15: 1014, 2014 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-25418849

RESUMO

BACKGROUND: Sphingobium spp. are efficient degraders of a wide range of chlorinated and aromatic hydrocarbons. In particular, strains which harbour the lin pathway genes mediating the degradation of hexachlorocyclohexane (HCH) isomers are of interest due to the widespread persistence of this contaminant. Here, we examined the evolution and diversification of the lin pathway under the selective pressure of HCH, by comparing the draft genomes of six newly-sequenced Sphingobium spp. (strains LL03, DS20, IP26, HDIPO4, P25 and RL3) isolated from HCH dumpsites, with three existing genomes (S. indicum B90A, S. japonicum UT26S and Sphingobium sp. SYK6). RESULTS: Efficient HCH degraders phylogenetically clustered in a closely related group comprising of UT26S, B90A, HDIPO4 and IP26, where HDIPO4 and IP26 were classified as subspecies with ANI value >98%. Less than 10% of the total gene content was shared among all nine strains, but among the eight HCH-associated strains, that is all except SYK6, the shared gene content jumped to nearly 25%. Genes associated with nitrogen stress response and two-component systems were found to be enriched. The strains also housed many xenobiotic degradation pathways other than HCH, despite the absence of these xenobiotics from isolation sources. Additionally, these strains, although non-motile, but posses flagellar assembly genes. While strains HDIPO4 and IP26 contained the complete set of lin genes, DS20 was entirely devoid of lin genes (except linKLMN) whereas, LL03, P25 and RL3 were identified as lin deficient strains, as they housed incomplete lin pathways. Further, in HDIPO4, linA was found as a hybrid of two natural variants i.e., linA1 and linA2 known for their different enantioselectivity. CONCLUSION: The bacteria isolated from HCH dumpsites provide a natural testing ground to study variations in the lin system and their effects on degradation efficacy. Further, the diversity in the lin gene sequences and copy number, their arrangement with respect to IS6100 and evidence for potential plasmid content elucidate possible evolutionary acquisition mechanisms for this pathway. This study further opens the horizon for selection of bacterial strains for inclusion in an HCH bioremediation consortium and suggests that HDIPO4, IP26 and B90A would be appropriate candidates for inclusion.


Assuntos
Hibridização Genômica Comparativa , Genoma Bacteriano , Sphingomonadaceae/genética , Sequência de Aminoácidos , Composição de Bases , Mapeamento Cromossômico , Análise por Conglomerados , Biologia Computacional , Evolução Molecular , Flagelos/genética , Perfilação da Expressão Gênica , Genes Bacterianos , Tamanho do Genoma , Genômica , Hexaclorocicloexano/química , Hexaclorocicloexano/metabolismo , Redes e Vias Metabólicas , Dados de Sequência Molecular , Nitrogênio/metabolismo , Filogenia , Plasmídeos/genética , Seleção Genética , Alinhamento de Sequência , Sphingomonadaceae/metabolismo
15.
Rev Environ Health ; 29(1-2): 49-52, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24622782

RESUMO

Hexachlorocyclohexane (HCH), a persistent organochlorine insecticide, has been extensively used in the past for control of agricultural pests and vector borne diseases. The use of HCH has indeed accrued benefits, however the unusual production of the insecticidal isomer; γ-HCH (lindane) and unregulated disposal of HCH muck has created various dumpsites all over the world, leading to serious environmental concerns. HCH isomers have been ranked as possible human carcinogens and endocrine disruptors with proven teratogenic, mutagenic and genotoxic effects, hence making its decontamination mandatory. Efforts in this direction have led to the isolation of various HCH degrading bacteria from the dumpsites, reflecting their role in HCH bioremediation. This review summarizes the problem of environmental persistence of HCH isomers along with their toxicity and possible solutions for their decontamination.


Assuntos
Poluentes Ambientais/metabolismo , Hexaclorocicloexano/metabolismo , Inseticidas/metabolismo , Sphingomonadaceae , Biodegradação Ambiental , Poluentes Ambientais/química , Substâncias Perigosas/química , Substâncias Perigosas/metabolismo , Hexaclorocicloexano/química , Inseticidas/química
16.
Microb Genom ; 7(3)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33750515

RESUMO

Mycobacterium tuberculosis is a known human pathogen that causes the airborne infectious disease tuberculosis (TB). Every year TB infects millions of people worldwide. The emergence of multi-drug resistant (MDR), extensively drug resistant (XDR) and totally drug resistant (TDR) M. tuberculosis strains against the first- and second-line anti-TB drugs has created an urgent need for the development and implementation of new drug strategies. In this study, the complete genomes of 174 strains of M. tuberculosis are analysed to understand the evolution of molecular drug target (MDT) genes. Phylogenomic placements of M. tuberculosis strains depicted close association and temporal clustering. Selection pressure analysis by deducing the ratio of non-synonymous to synonymous substitution rates (dN/dS) in 51 MDT genes of the 174 M. tuberculosis strains led to categorizing these genes into diversifying (D, dN/dS>0.70), moderately diversifying (MD, dN/dS=0.35-0.70) and stabilized (S, dN/dS<0.35) genes. The genes rpsL, gidB, pncA and ahpC were identified as diversifying, and Rv0488, kasA, ndh, ethR, ethA, embR and ddn were identified as stabilized genes. Furthermore, sequence similarity networks were drawn that supported these divisions. In the multiple sequence alignments of diversifying and stabilized proteins, previously reported resistance mutations were checked to predict sensitive and resistant strains of M. tuberculosis. Finally, to delineate the potential of stabilized or least diversified genes/proteins as anti-TB drug targets, protein-protein interactions of MDT proteins with human proteins were analysed. We predict that kasA (dN/dS=0.29), a stabilized gene that encodes the most host-interacting protein, KasA, should serve as a potential drug target for the treatment of TB.


Assuntos
Antituberculosos/farmacologia , Farmacorresistência Bacteriana Múltipla , Genoma Bacteriano , Mycobacterium tuberculosis/efeitos dos fármacos , Proteínas de Bactérias/genética , Evolução Biológica , Genoma Bacteriano/efeitos dos fármacos , Humanos , Mutação , Mycobacterium tuberculosis/classificação , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/isolamento & purificação , Filogenia , Análise de Sequência de DNA , Tuberculose/microbiologia
17.
mSystems ; 6(1)2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33622851

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has resulted in 92 million cases in a span of 1 year. The study focuses on understanding population-specific variations attributing its high rate of infections in specific geographical regions particularly in the United States. Rigorous phylogenomic network analysis of complete SARS-CoV-2 genomes (245) inferred five central clades named a (ancestral), b, c, d, and e (subtypes e1 and e2). Clade d and subclade e2 were found exclusively comprised of U.S. strains. Clades were distinguished by 10 co-mutational combinations in Nsp3, ORF8, Nsp13, S, Nsp12, Nsp2, and Nsp6. Our analysis revealed that only 67.46% of single nucleotide polymorphism (SNP) mutations were at the amino acid level. T1103P mutation in Nsp3 was predicted to increase protein stability in 238 strains except for 6 strains which were marked as ancestral type, whereas co-mutation (P409L and Y446C) in Nsp13 were found in 64 genomes from the United States highlighting its 100% co-occurrence. Docking highlighted mutation (D614G) caused reduction in binding of spike proteins with angiotensin-converting enzyme 2 (ACE2), but it also showed better interaction with the TMPRSS2 receptor contributing to high transmissibility among U.S. strains. We also found host proteins, MYO5A, MYO5B, and MYO5C, that had maximum interaction with viral proteins (nucleocapsid [N], spike [S], and membrane [M] proteins). Thus, blocking the internalization pathway by inhibiting MYO5 proteins which could be an effective target for coronavirus disease 2019 (COVID-19) treatment. The functional annotations of the host-pathogen interaction (HPI) network were found to be closely associated with hypoxia and thrombotic conditions, confirming the vulnerability and severity of infection. We also screened CpG islands in Nsp1 and N conferring the ability of SARS-CoV-2 to enter and trigger zinc antiviral protein (ZAP) activity inside the host cell.IMPORTANCE In the current study, we presented a global view of mutational pattern observed in SARS-CoV-2 virus transmission. This provided a who-infect-whom geographical model since the early pandemic. This is hitherto the most comprehensive comparative genomics analysis of full-length genomes for co-mutations at different geographical regions especially in U.S. strains. Compositional structural biology results suggested that mutations have a balance of opposing forces affecting pathogenicity suggesting that only a few mutations are effective at the translation level. Novel HPI analysis and CpG predictions elucidate the proof of concept of hypoxia and thrombotic conditions in several patients. Thus, the current study focuses the understanding of population-specific variations attributing a high rate of SARS-CoV-2 infections in specific geographical regions which may eventually be vital for the most severely affected countries and regions for sharp development of custom-made vindication strategies.

18.
mSystems ; 5(4)2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32723797

RESUMO

The outbreak of coronavirus disease 2019 (COVID-19) that started in Wuhan, China, in December 2019 has spread worldwide, emerging as a global pandemic. The severe respiratory pneumonia caused by novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has so far claimed more than 0.38 million lives and has impacted human lives worldwide. However, as the novel SARS-CoV-2 virus displays high transmission rates, the underlying genomic severity is required to be fully understood. We studied the complete genomes of 95 SARS-CoV-2 strains from different geographical regions worldwide to uncover the pattern of the spread of the virus. We show that there is no direct transmission pattern of the virus among neighboring countries, suggesting that its spread is a result of travel of infected humans to different countries. We revealed unique single nucleotide polymorphisms (SNPs) in nonstructural protein 13 (nsp13), nsp14, nsp15, and nsp16 (ORF1b polyproteins) and in the S-protein within 10 viral isolates from the United States. These viral proteins are involved in RNA replication and binding with the human receptors, indicating that the viral variants that are circulating in the population of the United States are different from those circulating in the populations of other countries. In addition, we found an amino acid addition in nsp16 (mRNA cap-1 methyltransferase) of a U.S. isolate (GenBank accession no. MT188341.1) leading to a shift in the amino acid frame from position 2540 onward. Through comparative structural analysis of the wild-type and mutant proteins, we showed that this addition of a phenylalanine residue renders the protein in the mutant less stable, which might affect mRNA cap-1 methyltransferase function. We further analyzed the SARS-CoV-2-human interactome, which revealed that the interferon signaling pathway is targeted by orf1ab during infection and that it also interacts with NF-κB-repressing factor (NKRF), which is a potential regulator of interleukin-8 (IL-8). We propose that targeting this interaction may subsequently improve the health condition of COVID-19 patients. Our analysis also emphasized that SARS-CoV-2 manipulates spliceosome machinery during infection; hence, targeting splicing might affect viral replication. In conclusion, the replicative machinery of SARS-CoV-2 is targeting interferon and the notch signaling pathway along with spliceosome machinery to evade host challenges.IMPORTANCE The COVID-19 pandemic continues to storm the world, with over 6.5 million cases worldwide. The severity of the disease varies with the territories and is mainly influenced by population density and age factor. In this study, we analyzed the transmission pattern of 95 SARS-CoV-2 genomes isolated from 11 different countries. Our study also revealed several nonsynonymous mutations in ORF1b and S-proteins and the impact on their structural stability. Our analysis showed the manipulation of host system by viral proteins through SARS-CoV-2-human protein interactome, which can be useful to understand the impact of virus on human health.

20.
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA