Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Microbiol ; 119(4): 439-455, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36708073

RESUMO

The histone-like protein HU plays a diverse role in bacterial physiology from the maintenance of chromosome structure to the regulation of gene transcription. HU binds DNA in a sequence-non-specific manner via two distinct binding modes: (i) random binding to any DNA through ionic bonds between surface-exposed lysine residues (K3, K18, and K83) and phosphate backbone (non-specific); (ii) preferential binding to contorted DNA of given structures containing a pair of kinks (structure-specific) through conserved proline residues (P63) that induce and/or stabilize the kinks. First, we show here that the P63-mediated structure-specific binding also requires the three lysine residues, which are needed for a non-specific binding. Second, we demonstrate that substituting P63 to alanine in HU had no impact on non-specific binding but caused differential transcription of diverse genes previously shown to be regulated by HU, such as those associated with the organonitrogen compound biosynthetic process, galactose metabolism, ribosome biogenesis, and cell adhesion. The structure-specific binding also helps create DNA supercoiling, which, in turn, may influence directly or indirectly the transcription of other genes. Our previous and current studies show that non-specific and structure-specific HU binding appear to have separate functions- nucleoid architecture and transcription regulation- which may be true in other DNA-binding proteins.


Assuntos
Proteínas de Bactérias , Histonas , Histonas/metabolismo , Proteínas de Bactérias/metabolismo , Lisina , Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , DNA Bacteriano/metabolismo
2.
PLoS Genet ; 16(10): e1009148, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33085664

RESUMO

[This corrects the article DOI: 10.1371/journal.pgen.1008456.].

3.
PLoS Genet ; 15(12): e1008456, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31830036

RESUMO

How genomes are organized within cells and how the 3D architecture of a genome influences cellular functions are significant questions in biology. A bacterial genomic DNA resides inside cells in a highly condensed and functionally organized form called nucleoid (nucleus-like structure without a nuclear membrane). The Escherichia coli chromosome or nucleoid is composed of the genomic DNA, RNA, and protein. The nucleoid forms by condensation and functional arrangement of a single chromosomal DNA with the help of chromosomal architectural proteins and RNA molecules as well as DNA supercoiling. Although a high-resolution structure of a bacterial nucleoid is yet to come, five decades of research has established the following salient features of the E. coli nucleoid elaborated below: 1) The chromosomal DNA is on the average a negatively supercoiled molecule that is folded as plectonemic loops, which are confined into many independent topological domains due to supercoiling diffusion barriers; 2) The loops spatially organize into megabase size regions called macrodomains, which are defined by more frequent physical interactions among DNA sites within the same macrodomain than between different macrodomains; 3) The condensed and spatially organized DNA takes the form of a helical ellipsoid radially confined in the cell; and 4) The DNA in the chromosome appears to have a condition-dependent 3-D structure that is linked to gene expression so that the nucleoid architecture and gene transcription are tightly interdependent, influencing each other reciprocally. Current advents of high-resolution microscopy, single-molecule analysis and molecular structure determination of the components are expected to reveal the total structure and function of the bacterial nucleoid.


Assuntos
DNA Bacteriano/química , Proteínas de Ligação a DNA/química , Escherichia coli/crescimento & desenvolvimento , RNA Bacteriano/química , DNA Super-Helicoidal/química , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/química , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Conformação Molecular , Imagem Individual de Molécula
4.
J Virol ; 94(3)2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31723020

RESUMO

During the latent phase, Kaposi's sarcoma-associated herpes virus (KSHV) maintains itself inside the host by escaping the host immune surveillance mechanism through restricted protein expression. Latency-associated nuclear antigen (LANA), the most abundantly expressed protein, is essential for viral persistence, as it plays important roles in latent viral DNA replication and efficient segregation of the viral genome to the daughter cells following cell division. KSHV evades immune detection by maintaining the levels of LANA protein below a threshold required for detection by the host immune system but sufficient to maintain the viral genome. LANA achieves this by controlling its expression through regulation of its promoters and by inhibiting its presentation through interaction with the proteins of class I and class II major histocompatibility complex (MHC) pathways. In this study, we identified a mechanism of LANA expression and restricted immune recognition through formation of G-quadruplexes in LANA mRNA. We show that the formation of these stable structures in LANA mRNA inhibits its translation to control antigen presentation, which was supported by treatment of cells with TMPyP4, a G-quadruplex-stabilizing ligand. We identified heterogenous ribonucleoprotein A1 (hnRNP A1) as a G-quadruplex-unwinding helicase, which unfolds these stable secondary structures to regulate LANA translation.IMPORTANCE LANA, the most abundantly expressed protein during latency, is a multifunctional protein which is absolutely required for the persistence of KSHV in the host cell. Even though the functions of LANA in aiding pathogenesis of the virus have been extensively studied, the mechanism of how LANA escapes host's immune surveillance is not fully understood. This study sheds light on the autoregulatory role of LANA to modulate its expression and immune evasion through formation of G-quadruplexes in its mRNA. We used G-quadruplex-stabilizing ligand to define the inhibition in LANA expression and presentation on the cell surface through MHC class I. We defined the autoregulatory role of LANA and identified a cellular RNA helicase, hnRNP A1, regulating the translation of LANA mRNA. This interaction of hnRNP A1 with LANA mRNA could be exploited for controlling KSHV latency.


Assuntos
Antígenos Virais/metabolismo , Quadruplex G , Herpesvirus Humano 8/fisiologia , Ribonucleoproteína Nuclear Heterogênea A1/metabolismo , Proteínas Nucleares/metabolismo , RNA Mensageiro/metabolismo , Antígenos Virais/química , Antígenos Virais/genética , Sequência de Bases , Linhagem Celular , DNA Viral , Genoma Viral , Herpesvirus Humano 8/genética , Ribonucleoproteína Nuclear Heterogênea A1/genética , Humanos , Complexo Principal de Histocompatibilidade/fisiologia , Proteínas Nucleares/química , Proteínas Nucleares/genética , Latência Viral/genética , Latência Viral/fisiologia , Replicação Viral/genética
5.
Mol Microbiol ; 111(3): 621-636, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30506600

RESUMO

The fitness of host-associated microbes depends on their ability to access nutrients in vivo. Identifying these mechanisms is significant for understanding how microbes have evolved to fill specific ecological niches within a host. Vibrio fischeri is a bioluminescent bacterium that colonizes and proliferates within the light organ of the Hawaiian bobtail squid, which provides an opportunity to study how bacteria grow in vivo. Here, the transcription factor CysB is shown to be necessary for V. fischeri both to grow on several sulfur sources in vitro and to establish symbiosis with juvenile squid. CysB is also found to regulate several genes involved in sulfate assimilation and to contribute to the growth of V. fischeri on cystine, which is the oxidized form of cysteine. A mutant that grows on cystine but not sulfate could establish symbiosis, suggesting that V. fischeri acquires nutrients related to this compound within the host. Finally, CysB-regulated genes are shown to be differentially expressed among the V. fischeri populations occupying the various colonization sites found within the light organ. Together, these results suggest the biogeography of V. fischeri populations within the squid light organ impacts the physiology of this symbiotic bacterium in vivo through CysB-dependent gene regulation.


Assuntos
Aliivibrio fischeri/crescimento & desenvolvimento , Aliivibrio fischeri/metabolismo , Proteínas de Bactérias/metabolismo , Decapodiformes/microbiologia , Regulação Bacteriana da Expressão Gênica , Enxofre/metabolismo , Simbiose , Aliivibrio fischeri/genética , Estruturas Animais/microbiologia , Animais , Proteínas de Bactérias/genética
6.
J Virol ; 93(8)2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30728255

RESUMO

The Kaposi's sarcoma-associated herpesvirus (KSHV) alkaline exonuclease SOX, encoded by open reading frame 37 (ORF37), is a bifunctional early-lytic-phase protein that possesses alkaline 5'-to-3' DNase activity and promotes host shutoff at the mRNA level during productive lytic infection. While the SOX protein is well characterized for drastically impairing cellular gene expression, little is known about the impact of its DNase activity on the KSHV genome and life cycle and the biology of KSHV infections. Here, we introduced a previously described DNase-inactivating Glu129His (Q129H) mutation into the ORF37 gene of the viral genome to generate ORF37-Q129H recombinant virus (the Q129H mutant) and investigated the effects of loss or inactivation of DNase activity on viral genome replication, cleavage, and packaging. For the first time, we provide experimental evidence that the DNase activity of the SOX protein does not affect viral latent/lytic DNA synthesis but is required for cleavage and processing of the KSHV genome during lytic replication. Interestingly, the Q129H mutation severely impaired intranuclear processing of progeny virions compared to the wild-type ORF37, as assessed by pulsed-field and Gardella gel electrophoresis, electron microscopy, and single-molecule analysis of replicating DNA (SMARD) assays. Complementation with ORF37-wt (wild type) or BGLF5 (the KSHV protein homolog in Epstein-Barr virus) in 293L/Q129H cells restored the viral genome encapsidation defects. Together, these results indicated that ORF37's proposed DNase activity is essential for viral genome processing and encapsidation and, hence, can be targeted for designing antiviral agents to block KSHV virion production.IMPORTANCE Kaposi's sarcoma (KS)-associated herpesvirus is the causative agent of multiple malignancies, predominantly in immunocompromised individuals, including HIV/AIDS patients. Reduced incidence of KS in HIV/AIDS patients receiving antiherpetic drugs to block lytic replication confirms the role of lytic DNA replication and gene products in KSHV-mediated tumorigenesis. Herpesvirus lytic replication results in the production of complex concatemeric DNA, which is cleaved into unit length viral DNA for packaging into the infectious virions. The conserved herpesviral alkaline exonucleases play an important role in viral genome cleavage and packaging. Here, by using the previously described Q129H mutant virus that selectively lacks DNase activity but retains host shutoff activity, we provide experimental evidence confirming that the DNase function of the KSHV SOX protein is essential for viral genome processing and packaging and capsid maturation into the cytoplasm during lytic replication in infected cells. This led to the identification of ORF37's DNase activity as a potential target for antiviral therapeutics.


Assuntos
Exodesoxirribonucleases/metabolismo , Regulação Viral da Expressão Gênica/fisiologia , Genoma Viral/fisiologia , Infecções por Herpesviridae/enzimologia , Herpesvirus Humano 8/fisiologia , Ativação Transcricional/fisiologia , Proteínas Virais/metabolismo , Replicação Viral/fisiologia , Substituição de Aminoácidos , Exodesoxirribonucleases/genética , Células HEK293 , Infecções por Herpesviridae/genética , Humanos , Mutação de Sentido Incorreto , Proteínas Virais/genética
7.
J Virol ; 93(7)2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30651368

RESUMO

Latency-associated nuclear antigen (LANA) is essential for maintaining the viral genome by regulating replication and segregation of the viral episomes. The virus maintains 50 to 100 episomal copies during latency and replicates in synchrony with the cellular DNA of the infected cells. Since virus lacks its own replication machinery, it utilizes the cellular proteins for replication and maintenance, and LANA has been shown to make many of these proteins available for replication by directly recruiting them to the viral origin of replication within the terminal repeat (TR) region. Our studies identified members of the minichromosome maintenance (MCM) complex as potential LANA-interacting proteins. Here, we show that LANA specifically interacts with the components of the MCM complex, primarily during the G1/S phase of the cell cycle. MCM3 and -4 of the MCM complex specifically bound to the amino-terminal domain, while MCM6 bound to both the amino- and carboxyl-terminal domains of LANA. The MCM binding region in the N-terminal domain mapped to the chromatin binding domain (CBD). LANA with point mutations in the carboxyl-terminal domain identified an MCM6 binding domain, and overexpression of that domain (amino acids [aa] 1100 to 1150) abolished TR replication. Introduction of a peptide encompassing the LANA aa 1104 to 1123 reduced MCM6 association with LANA and TR replication. Moreover, a recombinant Kaposi's sarcoma-associated herpesvirus (KSHV) expressing LANA with a deletion of aa 1100 to 1150 (BAC16Δ1100-1150, where BAC is bacmid) showed reduced replication and persistence of viral genome copies compared to levels with the wild-type BAC16. Additionally, the role of MCMs in viral replication was confirmed by depleting MCMs and assaying transient and long-term maintenance of the viral episomes. The recruitment of MCMs to the replication origins through LANA was demonstrated through chromatin immunoprecipitation and isolation of proteins on nascent replicated DNA (iPOND). These data clearly show the role of MCMs in latent DNA replication and the potential for targeting the C-terminal domain of LANA to block viral persistence.IMPORTANCE LANA-mediated latent DNA replication is essential for efficient maintenance of KSHV episomes in the host. During latency, virus relies on the host cellular machinery for replication, which occurs in synchrony with the cellular DNA. LANA interacts with the components of multiple cellular pathways, including cellular replication machinery, and recruits them to the viral origin for DNA replication. In this study, we characterize the interactions between LANA and minichromosome maintenance (MCM) proteins, members of the cellular replication complex. We demonstrated a cell cycle-dependent interaction between LANA and MCMs and determined their importance for viral genome replication and maintenance through biochemical assays. In addition, we mapped a 50-amino acid region in LANA which was capable of abrogating the association of MCM6 with LANA and blocking DNA replication. We also detected LANA along with MCMs at the replication forks using a novel approach, isolation of proteins on nascent DNA (iPOND).


Assuntos
Antígenos Virais/genética , Replicação do DNA/genética , DNA Viral/genética , Fase G1/genética , Proteínas de Manutenção de Minicromossomo/genética , Proteínas Nucleares/genética , Fase S/genética , Replicação Viral/genética , Divisão Celular/genética , Linhagem Celular , Linhagem Celular Tumoral , Núcleo Celular/genética , Genoma Viral/genética , Células HEK293 , Herpesvirus Humano 8/genética , Humanos , Origem de Replicação/genética , Sarcoma de Kaposi/genética , Sarcoma de Kaposi/virologia , Sequências Repetidas Terminais/genética , Latência Viral/genética
8.
Sensors (Basel) ; 20(20)2020 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-33080785

RESUMO

The COronaVIrus Disease (COVID-19) is a newly emerging viral disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Rapid increase in the number of COVID-19 cases worldwide led the WHO to declare a pandemic within a few months after the first case of infection. Due to the lack of a prophylactic measure to control the virus infection and spread, early diagnosis and quarantining of infected as well as the asymptomatic individuals are necessary for the containment of this pandemic. However, the current methods for SARS-CoV-2 diagnosis are expensive and time consuming, although some promising and inexpensive technologies are becoming available for emergency use. In this work, we report the synthesis of a cheap, yet highly sensitive, cobalt-functionalized TiO2 nanotubes (Co-TNTs)-based electrochemical sensor for rapid detection of SARS-CoV-2 through sensing the spike (receptor binding domain (RBD)) present on the surface of the virus. A simple, low-cost, and one-step electrochemical anodization route was used for synthesizing TNTs, followed by an incipient wetting method for cobalt functionalization of the TNTs platform, which was connected to a potentiostat for data collection. This sensor specifically detected the S-RBD protein of SARS-CoV-2 even at very low concentration (range of 14 to 1400 nM (nano molar)). Additionally, our sensor showed a linear response in the detection of viral protein over the concentration range. Thus, our Co-TNT sensor is highly effective in detecting SARS-CoV-2 S-RBD protein in approximately 30 s, which can be explored for developing a point of care diagnostics for rapid detection of SARS-CoV-2 in nasal secretions and saliva samples.


Assuntos
Betacoronavirus/metabolismo , Técnicas Biossensoriais/métodos , Nanotubos/química , Glicoproteína da Espícula de Coronavírus/análise , Titânio/química , Betacoronavirus/isolamento & purificação , COVID-19 , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/virologia , Técnicas Eletroquímicas , Humanos , Limite de Detecção , Pandemias , Pneumonia Viral/diagnóstico , Pneumonia Viral/virologia , Sistemas Automatizados de Assistência Junto ao Leito , Domínios Proteicos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/química
9.
J Virol ; 92(22)2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30158293

RESUMO

Minichromosome maintenance proteins (MCMs) play an important role in DNA replication by binding to the origins as helicase and recruiting polymerases for DNA synthesis. During the S phase, MCM complex is loaded to limit DNA replication once per cell cycle. We identified MCMs as ORF59 binding partners in our protein pulldown assays, which led us to hypothesize that this interaction influences DNA replication. ORF59's interactions with MCMs were confirmed in both endogenous and overexpression systems, which showed its association with MCM3, MCM4, MCM5, and MCM6. Interestingly, MCM6 interacted with both the N- and C-terminal domains of ORF59, and its depletion in BCBL-1 and BC3 cells led to an increase in viral genome copies, viral late gene transcripts, and virion production compared to the control cells following reactivation. MCMs perform their function by loading onto the replication competent DNA, and one means of regulating chromatin loading/unloading, in addition to enzymatic activity of the MCM complex, is by posttranslational modifications, including phosphorylation of these factors. Interestingly, a hypophosphorylated form of MCM3, which is associated with reduced loading onto the chromatin, was detected during lytic reactivation and correlated with its inability to associate with histones in reactivated cells. Additionally, chromatin immunoprecipitation showed lower levels of MCM3 and MCM4 association at cellular origins of replication and decreased levels of cellular DNA synthesis in cells undergoing reactivation. Taken together, these findings suggest a mechanism in which KSHV ORF59 disrupts the assembly and functions of MCM complex to stall cellular DNA replication and promote viral replication.IMPORTANCE KSHV is the causative agent of various lethal malignancies affecting immunocompromised individuals. Both lytic and latent phases of the viral life cycle contribute to the progression of these cancers. A better understanding of how viral proteins disrupt functions of a normal healthy cell to cause oncogenesis is warranted. One crucial lytic protein produced early during lytic reactivation is the multifunctional ORF59. In this report, we elucidated an important role of ORF59 in manipulating the cellular environment conducive for viral DNA replication by deregulating the normal functions of the host MCM proteins. ORF59 binds to specific MCMs and sequesters them away from replication origins in order to sabotage cellular DNA replication. Blocking cellular DNA replication ensures that cellular resources are utilized for transcription and replication of viral DNA.


Assuntos
Divisão Celular/genética , Replicação do DNA/genética , Herpesvirus Humano 8/genética , Proteínas de Manutenção de Minicromossomo/genética , Proteínas de Manutenção de Minicromossomo/metabolismo , Sarcoma de Kaposi/genética , Proteínas Virais/genética , Acetiltransferases/genética , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Células HEK293 , Herpesvirus Humano 8/crescimento & desenvolvimento , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Componente 4 do Complexo de Manutenção de Minicromossomo/genética , Fosforilação , Interferência de RNA , RNA Interferente Pequeno/genética , Sarcoma de Kaposi/patologia , Sarcoma de Kaposi/virologia , Ativação Viral/genética
10.
PLoS Pathog ; 13(7): e1006482, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28678843

RESUMO

Kaposi's sarcoma associated herpesvirus (KSHV) persists in a highly-ordered chromatin structure inside latently infected cells with the majority of the viral genome having repressive marks. However, upon reactivation the viral chromatin landscape changes into 'open' chromatin through the involvement of lysine demethylases and methyltransferases. Besides methylation of lysine residues of histone H3, arginine methylation of histone H4 plays an important role in controlling the compactness of the chromatin. Symmetric methylation of histone H4 at arginine 3 (H4R3me2s) negatively affects the methylation of histone H3 at lysine 4 (H3K4me3), an active epigenetic mark deposited on the viral chromatin during reactivation. We identified a novel binding partner to KSHV viral DNA processivity factor, ORF59-a protein arginine methyl transferase 5 (PRMT5). PRMT5 is an arginine methyltransferase that dimethylates arginine 3 (R3) of histone H4 in a symmetric manner, one hallmark of condensed chromatin. Our ChIP-seq data of symmetrically methylated H4 arginine 3 showed a significant decrease in H4R3me2s on the viral genome of reactivated cells as compared to the latent cells. Reduction in arginine methylation correlated with the binding of ORF59 on the viral chromatin and disruption of PRMT5 from its adapter protein, COPR5 (cooperator of PRMT5). Binding of PRMT5 through COPR5 is important for symmetric methylation of H4R3 and the expression of ORF59 competitively reduces the association of PRMT5 with COPR5, leading to a reduction in PRMT5 mediated arginine methylation. This ultimately resulted in a reduced level of symmetrically methylated H4R3 and increased levels of H3K4me3 marks, contributing to the formation of an open chromatin for transcription and DNA replication. Depletion of PRMT5 levels led to a decrease in symmetric methylation and increase in viral gene transcription confirming the role of PRMT5 in viral reactivation. In conclusion, ORF59 modulates histone-modifying enzymes to alter the chromatin structure during lytic reactivation.


Assuntos
Arginina/metabolismo , Genoma Viral , Infecções por Herpesviridae/virologia , Herpesvirus Humano 8/enzimologia , Herpesvirus Humano 8/fisiologia , Histonas/metabolismo , Ativação Viral , Motivos de Aminoácidos , Arginina/química , Infecções por Herpesviridae/genética , Infecções por Herpesviridae/metabolismo , Herpesvirus Humano 8/genética , Histonas/química , Histonas/genética , Interações Hospedeiro-Patógeno , Humanos , Metilação
11.
Nucleic Acids Res ; 44(8): 3675-94, 2016 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-26837574

RESUMO

Kaposi's sarcoma associated herpesvirus (KSHV) establishes life-long latent infection by persisting as an extra-chromosomal episome in the infected cells and by maintaining its genome in dividing cells. KSHV achieves this by tethering its epigenome to the host chromosome by latency associated nuclear antigen (LANA), which binds in the terminal repeat (TR) region of the viral genome. Sequence analysis of the TR, a GC-rich DNA element, identified several potential Quadruplex G-Rich Sequences (QGRS). Since quadruplexes have the tendency to obstruct DNA replication, we used G-quadruplex stabilizing compounds to examine their effect on latent DNA replication and the persistence of viral episomes. Our results showed that these G-quadruplex stabilizing compounds led to the activation of dormant origins of DNA replication, with preferential bi-directional pausing of replications forks moving out of the TR region, implicating the role of the G-rich TR in the perturbation of episomal DNA replication. Over time, treatment with PhenDC3 showed a loss of viral episomes in the infected cells. Overall, these data show that G-quadruplex stabilizing compounds retard the progression of replication forks leading to a reduction in DNA replication and episomal maintenance. These results suggest a potential role for G-quadruplex stabilizers in the treatment of KSHV-associated diseases.


Assuntos
Replicação do DNA/efeitos dos fármacos , Quadruplex G/efeitos dos fármacos , Herpesvirus Humano 8/efeitos dos fármacos , Herpesvirus Humano 8/genética , Plasmídeos/efeitos dos fármacos , Linhagem Celular , Genoma Viral/efeitos dos fármacos , Células HEK293 , Herpesvirus Humano 8/fisiologia , Humanos , Porfirinas/farmacologia , Origem de Replicação , Sequências Repetidas Terminais , Latência Viral
14.
Rev Med Virol ; 26(6): 435-445, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27550835

RESUMO

Post-translational modification of proteins with ubiquitin/small ubiquitin-like modifier (SUMO) molecules triggers multiple signaling pathways that are critical for many aspects of cellular physiology. Given that viruses hijack the biosynthetic and degradative systems of their host, it is not surprising that viruses encode proteins to manipulate the host's cellular machinery for ubiquitin/SUMO modification at multiple levels. Infection with a herpesvirus, among the most ubiquitous human DNA viruses, has been linked to many human diseases, including cancers. The interplay between human herpesviruses and the ubiquitylation/SUMOylation modification system has been extensively investigated in the past decade. In this review, we present an overview of recent advances to address how the ubiquitin/SUMO-modified system alters the latency and lytic replication of herpesvirus and how herpesviruses usurp the ubiquitin/SUMO pathways against the host's intrinsic and innate immune response to favor their pathogenesis.


Assuntos
Herpesviridae/fisiologia , Interações Hospedeiro-Patógeno , Evasão da Resposta Imune , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Ubiquitina/metabolismo , Replicação Viral , Humanos , Sumoilação , Ubiquitinação
15.
J Virol ; 89(6): 3093-111, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25552714

RESUMO

UNLABELLED: Kaposi's sarcoma-associated herpesvirus (KSHV) infects many target cells (e.g., endothelial, epithelial, and B cells, keratinocytes, and monocytes) to establish lifelong latent infections. Viral latent-protein expression is critical in inducing and maintaining KSHV latency. Infected cells are programmed to retain the incoming viral genomes during primary infection. Immediately after infection, KSHV transcribes many lytic genes that modulate various cellular pathways to establish successful infection. Analysis of the virion particle showed that the virions contain viral mRNAs, microRNAs, and other noncoding RNAs that are transduced into the target cells during infection, but their biological functions are largely unknown. We performed a comprehensive analysis of the KSHV virion packaged transcripts and the profiles of viral genes transcribed after de novo infections of various cell types (human peripheral blood mononuclear cells [PBMCs], CD14(+) monocytes, and telomerase-immortalized vascular endothelial [TIVE] cells), from viral entry until latency establishment. A next-generation sequence analysis of the total transcriptome showed that several viral RNAs (polyadenylated nuclear RNA, open reading frame 58 [ORF58], ORF59, T0.7, and ORF17) were abundantly present in the KSHV virions and effectively transduced into the target cells. Analysis of the transcription profiles of each viral gene showed specific expression patterns in different cell lines, with the majority of the genes, other than latent genes, silencing after 24 h postinfection. We differentiated the actively transcribing genes from the virion-transduced transcripts using a nascent RNA capture approach (Click-iT chemistry), which identified transcription of a number of viral genes during primary infection. Treating the infected cells with phosphonoacetic acid (PAA) to block the activity of viral DNA polymerase confirmed the involvement of lytic DNA replication during primary infection. To further understand the role of DNA replication during primary infection, we performed de novo PBMC infections with a recombinant ORF59-deleted KSHV virus, which showed significantly reduced numbers of viral copies in the latently infected cells. In summary, the transduced KSHV RNAs as well as the actively transcribed genes control critical processes of early infection to establish KSHV latency. IMPORTANCE: Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of multiple human malignancies in immunocompromised individuals. KSHV establishes a lifelong latency in the infected host, during which only a limited number of viral genes are expressed. However, a fraction of latently infected cells undergo spontaneous reactivation to produce virions that infect the surrounding cells. These newly infected cells are primed early to retain the incoming viral genome and induce cell growth. KSHV transcribes a variety of lytic proteins during de novo infections that modulate various cellular pathways to establish the latent infection. Interestingly, a large number of viral proteins and RNA are encapsidated in the infectious virions and transduced into the infected cells during a de novo infection. This study determined the kinetics of the viral gene expression during de novo KSHV infections and the functional role of the incoming viral transcripts in establishing latency.


Assuntos
Linfócitos B/virologia , Células Endoteliais/virologia , Infecções por Herpesviridae/virologia , Herpesvirus Humano 8/genética , Transcriptoma , Proteínas Virais/genética , Perfilação da Expressão Gênica , Regulação Viral da Expressão Gênica , Herpesvirus Humano 8/fisiologia , Humanos , Proteínas Virais/metabolismo , Latência Viral
16.
J Virol ; 89(10): 5536-56, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25740990

RESUMO

UNLABELLED: Major histocompatibility complex class II (MHC-II) molecules play a central role in adaptive antiviral immunity by presenting viral peptides to CD4(+) T cells. Due to their key role in adaptive immunity, many viruses, including Kaposi's sarcoma-associated herpesvirus (KSHV), have evolved multiple strategies to inhibit the MHC-II antigen presentation pathway. The expression of MHC-II, which is controlled mainly at the level of transcription, is strictly dependent upon the binding of the class II transactivator (CIITA) to the highly conserved promoters of all MHC-II genes. The recruitment of CIITA to MHC-II promoters requires its direct interactions with a preassembled MHC-II enhanceosome consisting of cyclic AMP response element-binding protein (CREB) and nuclear factor Y (NF-Y) complex and regulatory factor X (RFX) complex proteins. Here, we show that KSHV-encoded latency-associated nuclear antigen (LANA) disrupts the association of CIITA with the MHC-II enhanceosome by binding to the components of the RFX complex. Our data show that LANA is capable of binding to all three components of the RFX complex, RFX-associated protein (RFXAP), RFX5, and RFX-associated ankyrin-containing protein (RFXANK), in vivo but binds more strongly with the RFXAP component in in vitro binding assays. Levels of MHC-II proteins were significantly reduced in KSHV-infected as well as LANA-expressing B cells. Additionally, the expression of LANA in a luciferase promoter reporter assay showed reduced HLA-DRA promoter activity in a dose-dependent manner. Chromatin immunoprecipitation assays showed that LANA binds to the MHC-II promoter along with RFX proteins and that the overexpression of LANA disrupts the association of CIITA with the MHC-II promoter. These assays led to the conclusion that the interaction of LANA with RFX proteins interferes with the recruitment of CIITA to MHC-II promoters, resulting in an inhibition of MHC-II gene expression. Thus, the data presented here identify a novel mechanism used by KSHV to downregulate the expressions of MHC-II genes. IMPORTANCE: Kaposi's sarcoma-associated herpesvirus is the causative agent of multiple human malignancies. It establishes a lifelong latent infection and persists in infected cells without being detected by the host's immune surveillance system. Only a limited number of viral proteins are expressed during latency, and these proteins play a significant role in suppressing both the innate and adaptive immunities of the host. Latency-associated nuclear antigen (LANA) is one of the major proteins expressed during latent infection. Here, we show that LANA blocks MHC-II gene expression to subvert the host immune system by disrupting the MHC-II enhanceosome through binding with RFX transcription factors. Therefore, this study identifies a novel mechanism utilized by KSHV LANA to deregulate MHC-II gene expression, which is critical for CD4(+) T cell responses in order to escape host immune surveillance.


Assuntos
Antígenos Virais/imunologia , Proteínas de Ligação a DNA/imunologia , Herpesvirus Humano 8/imunologia , Antígenos de Histocompatibilidade Classe II/metabolismo , Proteínas Nucleares/imunologia , Fatores de Transcrição/imunologia , Imunidade Adaptativa , Apresentação de Antígeno , Antígenos Virais/química , Antígenos Virais/genética , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/metabolismo , Regulação para Baixo , Genes MHC da Classe II , Células HEK293 , Cadeias alfa de HLA-DR/genética , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/fisiologia , Interações Hospedeiro-Patógeno , Humanos , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Fatores de Transcrição de Fator Regulador X , Transativadores/metabolismo , Fatores de Transcrição/metabolismo
17.
Appl Environ Microbiol ; 82(19): 5990-6, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27474717

RESUMO

UNLABELLED: How the function of microbial symbionts is affected by their population/consortium structure within a host remains poorly understood. The symbiosis established between Euprymna scolopes and Vibrio fischeri is a well-characterized host-microbe association in which the function and structure of V. fischeri populations within the host are known: V. fischeri populations produce bioluminescence from distinct crypt spaces within a dedicated host structure called the light organ. Previous studies have revealed that luminescence is required for V. fischeri populations to persist within the light organ and that deletion of the lux gene locus, which is responsible for luminescence in V. fischeri, leads to a persistence defect. In this study, we investigated the impact of bioluminescence on V. fischeri population structure within the light organ. We report that the persistence defect is specific to crypt I, which is the most developmentally mature crypt space within the nascent light organ. This result provides insight into the structure/function relationship that will be useful for future mechanistic studies of squid-Vibrio symbiosis. In addition, our report highlights the potential impact of the host developmental program on the spatiotemporal dynamics of host-microbe interactions. IMPORTANCE: Metazoan development and physiology depend on microbes. The relationship between the symbiotic function of microbes and their spatial structure within the host environment remains poorly understood. Here we demonstrate, using a binary symbiosis, that the host requirement for the symbiotic function of the microbial symbiont is restricted to a specific host environment. Our results also suggest a link between microbial function and host development that may be a fundamental aspect of the more complex host-microbe interactions.


Assuntos
Aliivibrio fischeri/fisiologia , Decapodiformes/microbiologia , Luminescência , Simbiose , Animais
19.
J Virol ; 88(8): 4204-17, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24478433

RESUMO

UNLABELLED: Kaposi's sarcoma-associated herpesvirus (KSHV) is a human gammaherpesvirus casually linked to Kaposi's sarcoma (KS), multicentric Castleman's disease (MCD), and primary effusion lymphoma (PEL). Previously, we showed that LANA encoded by KSHV upregulates expression of survivin, a member of the inhibitor of apoptosis (IAP) family. This leads to an increase in the rate of cell proliferation of KSHV-infected B cells. LANA is required for tethering of the KSHV episome to the host chromosomes and efficiently segregates the viral genomes into dividing tumor cells. Here we show that LANA interacts with Aurora kinase B (AK-B) and induces phosphorylation of survivin at residue T34. Phosphorylation of survivin specifically on residue T34 enhances the activity of p300 and inhibits the activity of histone deacetylase 1 (HDAC-1), which then leads to an increase in acetylation of histone H3 on the viral genome. Phosphorylation of survivin specifically on residue T34 upregulates the activities of histone acetyltransferases and deacetylases, which then leads to an increase in viral copy number in KSHV-infected B cells. This results in a boost of KSHV replication in latently infected B-lymphoma cells. The studies showed that LANA can also function to regulate viral replication prior to mitosis of the latently infected cells, suggesting that LANA possesses a novel role in regulating KSHV replication in infected B cells. IMPORTANCE: This work represents a report of KSHV latent protein LANA and its interactions with AK-B leading to induction of phosphorylation of the oncoprotein survivin at residue T34. Phosphorylation of survivin specifically on residue T34 upregulates the activities of histone acetyltransferases and deacetylases. This leads to an increase in viral copy number in KSHV-infected B cells. These studies support a role for LANA in regulating KSHV replication through posttranslation modification in KSHV-infected B cells.


Assuntos
Antígenos Virais/metabolismo , Herpesvirus Humano 8/fisiologia , Proteínas Inibidoras de Apoptose/metabolismo , Proteínas Nucleares/metabolismo , Sarcoma de Kaposi/metabolismo , Latência Viral , Replicação Viral , Antígenos Virais/genética , Aurora Quinase B/genética , Aurora Quinase B/metabolismo , Linhagem Celular , Herpesvirus Humano 8/genética , Humanos , Proteínas Inibidoras de Apoptose/genética , Proteínas Nucleares/genética , Fosforilação , Ligação Proteica , Sarcoma de Kaposi/genética , Sarcoma de Kaposi/virologia , Survivina
20.
J Virol ; 88(12): 6873-84, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24696491

RESUMO

UNLABELLED: Hypoxia-inducible factor 1α (HIF-1α) has been frequently implicated in many cancers as well as viral pathogenesis. Kaposi's sarcoma-associated herpesvirus (KSHV) is linked to several human malignancies. It can stabilize HIF-1α during latent infection and undergoes lytic replication in response to hypoxic stress. However, the mechanism by which KSHV controls its latent and lytic life cycle through the deregulation of HIF-1α is not fully understood. Our previous studies showed that the hypoxia-sensitive chromatin remodeler KAP1 was targeted by the KSHV-encoded latency-associated nuclear antigen (LANA) to repress expression of the major lytic replication and transcriptional activator (RTA). Here we further report that an RNA interference-based knockdown of KAP1 in KSHV-infected primary effusion lymphoma (PEL) cells disrupted viral episome stability and abrogated sub-G1/G1 arrest of the cell cycle while increasing the efficiency of KSHV lytic reactivation by hypoxia or using the chemical 12-O-tetradecanoylphorbol-13-acetate (TPA) or sodium butyrate (NaB). Moreover, KSHV genome-wide screening revealed that four hypoxia-responsive clusters have a high concurrence of both RBP-Jκ and HIF-1α binding sites (RBS+HRE) within the same gene promoter and are tightly associated with KAP1. Inhibition of KAP1 greatly enhanced the association of RBP-Jκ with the HIF-1α complex for driving RTA expression not only in normoxia but also in hypoxia. These results suggest that both KAP1 and the concurrence of RBS+HRE within the RTA promoter are essential for KSHV latency and hypoxia-induced lytic reactivation. IMPORTANCE: Kaposi's sarcoma-associated herpesvirus (KSHV), a DNA tumor virus, is an etiological agent linked to several human malignancies, including Kaposi's sarcoma (KS) and primary effusion lymphoma (PEL). HIF-1α, a key hypoxia-inducible factor, is frequently elevated in KSHV latently infected tumor cells and contributes to KSHV lytic replication in hypoxia. The molecular mechanisms of how KSHV controls the latent and lytic life cycle through deregulating HIF-1α remain unclear. In this study, we found that inhibition of hypoxia-sensitive chromatin remodeler KAP1 in KSHV-infected PEL cells leads to a loss of viral genome and increases its sensitivity to hypoxic stress, leading to KSHV lytic reactivation. Importantly, we also found that four hypoxia-responsive clusters within the KSHV genome contain a high concurrence of RBP-Jκ (a key cellular regulator involved in Notch signaling) and HIF-1α binding sites. These sites are also tightly associated with KAP1. This discovery implies that KAP1, RBP-Jκ, and HIF-1α play an essential role in KSHV pathogenesis through subtle cross talk which is dependent on the oxygen levels in the infected cells.


Assuntos
Herpesvirus Humano 8/fisiologia , Hipóxia/metabolismo , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Proteínas Repressoras/genética , Sarcoma de Kaposi/metabolismo , Ativação Viral , Ciclo Celular , Linhagem Celular Tumoral , Herpesvirus Humano 8/genética , Humanos , Hipóxia/genética , Hipóxia/fisiopatologia , Hipóxia/virologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/genética , Oxigênio/metabolismo , Proteínas Repressoras/metabolismo , Sarcoma de Kaposi/genética , Sarcoma de Kaposi/fisiopatologia , Sarcoma de Kaposi/virologia , Proteína 28 com Motivo Tripartido , Latência Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA