Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Appl Environ Microbiol ; 84(21)2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30143505

RESUMO

In the present study, we investigated whether reducing the particle size of wheat bran affects the colonizing microbial community using batch fermentations with cecal inocula from seven different chickens. We also investigated the effect of in-feed administration of regular wheat bran (WB; 1,690 µm) and wheat bran with reduced particle size (WB280; 280 µm) on the cecal microbial community composition of broilers. During batch fermentation, WB280 was colonized by a lactic acid-producing community (Bifidobacteriaceae and Lactobacillaceae) and by Lachnospiraceae that contain lactic acid-consuming butyric acid-producing species. The relative abundances of the Enterobacteriaceae decreased in the particle-associated communities for both WB and WB280 compared to that of the control. In addition, the community attached to wheat bran was enriched in xylan-degrading bacteria. When administered as a feed additive to broilers, WB280 significantly increased the richness of the cecal microbiota and the abundance of bacteria containing the butyryl-coenzyme A (CoA):acetate CoA-transferase gene, a key gene involved in bacterial butyrate production, while decreasing the abundances of Enterobacteriaceae family members in the ceca. Particle size reduction of wheat bran thus resulted in the colonization of the bran particles by a very specific lactic acid- and butyric acid-producing community and can be used to steer toward beneficial microbial shifts. This can potentially increase the resilience against pathogens and increase animal performance when the reduced-particle-size wheat bran is administered as a feed additive to broilers.IMPORTANCE Prebiotic dietary fibers are known to improve the gastrointestinal health of both humans and animals in many different ways. They can increase the bulking capacity, improve transit times, and, depending on the fiber, even stimulate the growth and activity of resident beneficial bacteria. Wheat bran is a readily available by-product of flour processing and is a highly concentrated source of (in)soluble dietary fiber. The intake of fiber-rich diets has been associated with increased Firmicutes and decreased Proteobacteria numbers. Here, we show that applying only 1% of a relatively simple substrate which was technically modified using relatively simple techniques reduces the concentration of Enterobacteriaceae This could imply that in future intervention studies, one should take the particle size of dietary fibers into account.


Assuntos
Ração Animal/microbiologia , Galinhas/microbiologia , Fibras na Dieta/análise , Enterobacteriaceae/crescimento & desenvolvimento , Microbioma Gastrointestinal , Lactobacillaceae/crescimento & desenvolvimento , Ração Animal/análise , Animais , Ácido Butírico/metabolismo , Ceco/microbiologia , Galinhas/metabolismo , Fibras na Dieta/metabolismo , Fibras na Dieta/microbiologia , Fermentação , Ácido Láctico/metabolismo , Lactobacillaceae/metabolismo , Tamanho da Partícula , Triticum/química , Triticum/metabolismo , Triticum/microbiologia
2.
J Chem Phys ; 148(12): 123306, 2018 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-29604805

RESUMO

In the past decades, sensitive fluorescence microscopy techniques have contributed significantly to our understanding of the dynamics of DNA. The specific labeling of DNA using intercalating dyes has allowed for quantitative measurement of the thermal fluctuations the polymers undergo. On the other hand, recent advances in single-molecule manipulation techniques have unraveled the mechanical and elastic properties of this intricate polymer. Here, we have combined these two approaches to study the conformational dynamics of DNA under a wide range of tensions. Using polarized fluorescence microscopy in conjunction with optical-tweezers-based manipulation of YOYO-intercalated DNA, we controllably align the YOYO dyes using DNA tension, enabling us to disentangle the rapid dynamics of the dyes from that of the DNA itself. With unprecedented control of the DNA alignment, we resolve an inconsistency in reports about the tilted orientation of intercalated dyes. We find that intercalated dyes are on average oriented perpendicular to the long axis of the DNA, yet undergo fast dynamics on the time scale of absorption and fluorescence emission. In the overstretching transition of double-stranded DNA, we do not observe changes in orientation or orientational dynamics of the dyes. Only beyond the overstretching transition, a considerable depolarization is observed, presumably caused by an average tilting of the DNA base pairs. Our combined approach thus contributes to the elucidation of unique features of the molecular dynamics of DNA.


Assuntos
DNA/química , Substâncias Intercalantes/química , Polarização de Fluorescência
3.
J Physiol ; 595(2): 541-555, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-27510655

RESUMO

KEY POINTS: The short-chain fatty acids (SCFAs) are bacterial metabolites produced during the colonic fermentation of undigested carbohydrates, such as dietary fibre and prebiotics, and can mediate the interaction between the diet, the microbiota and the host. We quantified the fraction of colonic administered SCFAs that could be recovered in the systemic circulation, the fraction that was excreted via the breath and urine, and the fraction that was used as a precursor for glucose, cholesterol and fatty acids. This information is essential for understanding the molecular mechanisms by which SCFAs beneficially affect physiological functions such as glucose and lipid metabolism and immune function. ABSTRACT: The short-chain fatty acids (SCFAs), acetate, propionate and butyrate, are bacterial metabolites that mediate the interaction between the diet, the microbiota and the host. In the present study, the systemic availability of SCFAs and their incorporation into biologically relevant molecules was quantified. Known amounts of 13 C-labelled acetate, propionate and butyrate were introduced in the colon of 12 healthy subjects using colon delivery capsules and plasma levels of 13 C-SCFAs 13 C-glucose, 13 C-cholesterol and 13 C-fatty acids were measured. The butyrate-producing capacity of the intestinal microbiota was also quantified. Systemic availability of colonic-administered acetate, propionate and butyrate was 36%, 9% and 2%, respectively. Conversion of acetate into butyrate (24%) was the most prevalent interconversion by the colonic microbiota and was not related to the butyrate-producing capacity in the faecal samples. Less than 1% of administered acetate was incorporated into cholesterol and <15% in fatty acids. On average, 6% of colonic propionate was incorporated into glucose. The SCFAs were mainly excreted via the lungs after oxidation to 13 CO2 , whereas less than 0.05% of the SCFAs were excreted into urine. These results will allow future evaluation and quantification of SCFA production from 13 C-labelled fibres in the human colon by measurement of 13 C-labelled SCFA concentrations in blood.


Assuntos
Colo/metabolismo , Ácidos Graxos Voláteis/farmacocinética , Adulto , Cápsulas , Isótopos de Carbono , Colesterol/metabolismo , Colo/microbiologia , Estudos Cross-Over , Ácidos Graxos Voláteis/administração & dosagem , Ácidos Graxos Voláteis/sangue , Ácidos Graxos Voláteis/urina , Feminino , Microbioma Gastrointestinal/fisiologia , Glucose/metabolismo , Voluntários Saudáveis , Humanos , Masculino , Adulto Jovem
4.
Vet Res ; 44: 45, 2013 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-23782465

RESUMO

Bovine necrohemorrhagic enteritis is a major cause of mortality in veal calves. Clostridium perfringens is considered as the causative agent, but there has been controversy on the toxins responsible for the disease. Recently, it has been demonstrated that a variety of C. perfringens type A strains can induce necrohemorrhagic lesions in a calf intestinal loop assay. These results put forward alpha toxin and perfringolysin as potential causative toxins, since both are produced by all C. perfringens type A strains. The importance of perfringolysin in the pathogenesis of bovine necrohemorrhagic enteritis has not been studied before. Therefore, the objective of the current study was to evaluate the role of perfringolysin in the development of necrohemorrhagic enteritis lesions in calves and its synergism with alpha toxin. A perfringolysin-deficient mutant, an alpha toxin-deficient mutant and a perfringolysin alpha toxin double mutant were less able to induce necrosis in a calf intestinal loop assay as compared to the wild-type strain. Only complementation with both toxins could restore the activity to that of the wild-type. In addition, perfringolysin and alpha toxin had a synergistic cytotoxic effect on bovine endothelial cells. This endothelial cell damage potentially explains why capillary hemorrhages are an initial step in the development of bovine necrohemorrhagic enteritis. Taken together, our results show that perfringolysin acts synergistically with alpha toxin in the development of necrohemorrhagic enteritis in a calf intestinal loop model and we hypothesize that both toxins act by targeting the endothelial cells.


Assuntos
Toxinas Bacterianas/toxicidade , Proteínas de Ligação ao Cálcio/toxicidade , Doenças dos Bovinos/microbiologia , Clostridium perfringens/fisiologia , Enterite/veterinária , Proteínas Hemolisinas/toxicidade , Fosfolipases Tipo C/toxicidade , Animais , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Bovinos , Clostridium perfringens/genética , Células Endoteliais/microbiologia , Células Endoteliais/patologia , Enterite/microbiologia , Ensaio de Imunoadsorção Enzimática/veterinária , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Intestinos/microbiologia , Intestinos/patologia , Mutação , Necrose/microbiologia , Necrose/veterinária , Fosfolipases Tipo C/genética , Fosfolipases Tipo C/metabolismo
5.
Anim Nutr ; 12: 151-158, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36683878

RESUMO

In vitro digestion studies demonstrate large potential to gain more and quicker insights into the underlying mechanisms of feed additives, allowing the optimization of feed design. Unfortunately, current in vitro digestion models relevant for broiler chickens lack sufficient description in terms of protocols and standardisation used. Furthermore, no distinction is made between the different life phases of these animals (starter, grower, and finisher). Hence, our research aimed to establish adapted in vitro digestion conditions, corresponding to the 3 life phases in broilers, with specific focus on lipid digestion. The effect of 3 different bile salt concentrations of 2, 10, and 20 mM, and 3 different lipase activities of 5, 20, and 100 U/mL, on in vitro lipid digestion kinetics were evaluated using a full factorial design. These values were selected to represent starter, grower, and finisher birds, respectively. Our findings showed that the extent of lipid digestion was mainly influenced by lipase activity. The rate of lipid digestion was affected by an interplay between bile salt concentration and lipase activity, due to possible lipase inhibition at certain bile salt concentrations. Overall, this work resulted in 3 in vitro lipid digestion models representative for starter, grower, and finisher birds. In conclusion, this research showed the impact of adapted in vitro digestion conditions on lipid digestion kinetics and thus the need for these conditions relevant for each life phase of broilers.

6.
J Phys Chem B ; 113(12): 3837-44, 2009 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-19673071

RESUMO

The micrometer-scale length of some protein polymers allows them to be mechanically manipulated in single-molecule experiments. This provides a direct way to measure persistence length. We have used a double optical trap to elastically deform single microtubules and actin filaments. Axial extensional force was exerted on beads attached laterally to the filaments. Because the attachments are off the line of force, pulling the beads apart couples to local bending of the filament. We present a simple mechanical model for the resulting highly nonlinear elastic response of the dumbbell construct. The flexural rigidities of the microfilaments that were found by fitting the model to the experimentally observed force-distance curves are (7.1 +/- 0.8) x 10(4) pN nm2 (persistence length L(p) = 17.2 microm) for F-actin and (6.1 +/- 1.3) x 10(6) pN nm2 (L(p) = 1.4 mm) for microtubules.


Assuntos
Actinas/química , Polímeros/química , Animais , Elasticidade , Modelos Químicos , Resistência ao Cisalhamento , Suínos , Tubulina (Proteína)/química
7.
Nutrients ; 7(11): 8916-29, 2015 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-26516911

RESUMO

Short chain fatty acids (SCFA), including acetate, propionate, and butyrate, are produced during bacterial fermentation of undigested carbohydrates in the human colon. In this study, we applied a stable-isotope dilution method to quantify the in vivo colonic production of SCFA in healthy humans after consumption of inulin. Twelve healthy subjects performed a test day during which a primed continuous intravenous infusion with [1-(13)C]acetate, [1-(13)C]propionate and [1-(13)C]butyrate (12, 1.2 and 0.6 µmol·kg(-1)·min(-1), respectively) was applied. They consumed 15 g of inulin with a standard breakfast. Breath and blood samples were collected at regular times during the day over a 12 h period. The endogenous rate of appearance of acetate, propionate, and butyrate was 13.3 ± 4.8, 0.27 ± 0.09, and 0.28 ± 0.12 µmol·kg(-1)·min(-1), respectively. Colonic inulin fermentation was estimated to be 137 ± 75 mmol acetate, 11 ± 9 mmol propionate, and 20 ± 17 mmol butyrate over 12 h, assuming that 40%, 10%, and 5% of colonic derived acetate, propionate, and butyrate enter the systemic circulation. In conclusion, inulin is mainly fermented into acetate and, to lesser extents, into butyrate and propionate. Stable isotope technology allows quantifying the production of the three main SCFA in vivo and proved to be a practical tool to investigate the extent and pattern of SCFA production.


Assuntos
Isótopos de Carbono/metabolismo , Colo/metabolismo , Fibras na Dieta/metabolismo , Ácidos Graxos Voláteis/metabolismo , Fermentação , Inulina/metabolismo , Estado Nutricional , Acetatos/metabolismo , Adulto , Bactérias/metabolismo , Butiratos/metabolismo , Colo/microbiologia , Ácidos Graxos Voláteis/biossíntese , Ácidos Graxos Voláteis/farmacocinética , Feminino , Humanos , Masculino , Propionatos/metabolismo , Valores de Referência , Adulto Jovem
8.
Front Vet Sci ; 2: 75, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26734618

RESUMO

The ban on antimicrobial growth promoters and efforts to reduce therapeutic antibiotic usage has led to major problems of gastrointestinal dysbiosis in livestock production in Europe. Control of dysbiosis without the use of antibiotics requires a thorough understanding of the interaction between the microbiota and the host mucosa. The gut microbiota of the healthy chicken is highly diverse, producing various metabolic end products, including gases and fermentation acids. The distal gut knows an abundance of bacteria from within the Firmicutes Clostridium clusters IV and XIVa that produce butyric acid, which is one of the metabolites that are sensed by the host as a signal. The host responds by strengthening the epithelial barrier, reducing inflammation, and increasing the production of mucins and antimicrobial peptides. Stimulating the colonization and growth of butyrate-producing bacteria thus may help optimizing gut health. Various strategies are available to stimulate butyrate production in the distal gut. These include delivery of prebiotic substrates that are broken down by bacteria into smaller molecules which are then used by butyrate producers, a concept called cross-feeding. Xylo-oligosaccharides (XOS) are such compounds as they can be converted to lactate, which is further metabolized to butyrate. Probiotic lactic acid producers can be supplied to support the cross-feeding reactions. Direct feeding of butyrate-producing Clostridium cluster IV and XIVa strains are a future tool provided that large scale production of strictly anaerobic bacteria can be optimized. Current results of strategies that promote butyrate production in the gut are promising. Nevertheless, our current understanding of the intestinal ecosystem is still insufficient, and further research efforts are needed to fully exploit the capacity of these strategies.

9.
Appl Opt ; 45(8): 1812-9, 2006 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-16572698

RESUMO

Optical traps are commonly constructed with high-numerical-aperture objectives. Oil-immersion objectives suffer from spherical aberrations when used for imaging in aqueous solutions. The effect of spherical aberrations on trapping strength has been modeled by approximation, and only a few experimental results are available in the case of micrometer-sized particles. We present an experimental study of the dependence of lateral and axial optical-trap stiffness on focusing depth for polystyrene and silica beads of 2 microm diameter by using oil- and water-immersion objectives. We demonstrate a strong depth dependence of trap stiffness with the oil-immersion objective, whereas no depth dependence was observed with the water-immersion objective.

10.
J Muscle Res Cell Motil ; 23(1): 71-9, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12363288

RESUMO

Both experimental evidence and theoretical models for collective effects in the working mechanism of molecular motors are reviewed at three different levels, namely: (i) interaction between the two heads of double-headed motors, particularly in processive motors like kinesin, myosin V and myosin VI, (ii) cooperative regulation of muscle thin filaments by accessory proteins and the Ca2+ level, and (iii) collective dynamic effects stemming from the mechanical coupling of molecular motors within macroscopic structures such as muscle thick filaments or axonemes. We aim to bridge the gap between structural information at the molecular level and physiological data with accompanying specific models on the one hand, and general stochastic physical models for the action of molecular motors on the other hand. An underlying assumption is that while, ultimately, the function of molecular motors will be explainable by a quantitative description of specific intramolecular dynamics and intermolecular interactions, for some coarse grained larger scale dynamic features it will be sufficient and illuminating to construct physical models that are simplified to the bare essentials.


Assuntos
Modelos Biológicos , Proteínas Motores Moleculares/química , Proteínas Motores Moleculares/fisiologia , Animais , Humanos , Proteínas Motores Moleculares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA