Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Psychophysiology ; : e14641, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951745

RESUMO

Resting heart rate may confer risk for cardiovascular disease (CVD) and other adverse cardiovascular events. While the brainstem's autonomic control over heart rate is well established, less is known about the regulatory role of higher level cortical and subcortical brain regions, especially in humans. This study sought to characterize the brain networks that predict variation in prevailing heart rate in otherwise healthy adults. We used machine learning approaches designed for complex, high-dimensional data sets, to predict variation in instantaneous heart period (the inter-heartbeat-interval) from whole-brain hemodynamic signals measured by fMRI. Task-based and resting-state fMRI, as well as peripheral physiological recordings, were taken from two data sets that included extensive repeated measurements within individuals. Our models reliably predicted instantaneous heart period from whole-brain fMRI data both within and across individuals, with prediction accuracies being highest when measured within-participants. We found that a network of cortical and subcortical brain regions, many linked to visceral motor and visceral sensory processes, were reliable predictors of variation in heart period. This adds to evidence on brain-heart interactions and constitutes an incremental step toward developing clinically applicable biomarkers of brain contributions to CVD risk.

2.
J Neurosci ; 39(35): 6968-6977, 2019 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-31296537

RESUMO

As a sequence of movements is learned, serially ordered actions get bound together into sets to reduce computational complexity during planning and execution. Here, we investigated how actions become naturally bound over the course of learning and how this learning affects cortical representations of individual actions. Across 5 weeks of practice, neurologically healthy human subjects learned either a complex 32-item sequence of finger movements (trained group, n = 9; 3 female) or randomly ordered actions (control group, n = 9; 3 female). Over the course of practice, responses during sequence production in the trained group became temporally correlated, consistent with responses being bound together under a common command. These behavioral changes, however, did not coincide with plasticity in the multivariate representations of individual finger movements, assessed using fMRI, at any level of the cortical motor hierarchy. This suggests that the representations of individual actions remain stable, even as the execution of those same actions become bound together in the context of producing a well learned sequence.SIGNIFICANCE STATEMENT Extended practice on motor sequences results in highly stereotyped movement patterns that bind successive movements together. This binding is critical for skilled motor performance, yet it is not currently understood how it is achieved in the brain. We examined how binding altered the patterns of activity associated with individual movements that make up the sequence. We found that fine finger control during sequence production involved correlated activity throughout multiple motor regions; however, we found no evidence for plasticity of the representations of elementary movements. This suggests that binding is associated with plasticity at a more abstract level of the motor hierarchy.


Assuntos
Córtex Motor/fisiologia , Neurônios/fisiologia , Desempenho Psicomotor/fisiologia , Aprendizagem Seriada/fisiologia , Adulto , Feminino , Dedos/fisiologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Córtex Motor/diagnóstico por imagem , Destreza Motora/fisiologia , Movimento/fisiologia , Adulto Jovem
3.
Cereb Cortex ; 28(8): 2834-2845, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29106535

RESUMO

The relative influence of affective and cognitive processes on behavior is increasingly understood to transform through development, from adolescence into adulthood, but the neuroanatomical mechanisms underlying this change are not well understood. We analyzed diffusion magnetic resonance imaging in 115 10- to 28-year-old participants to identify convergent corticostriatal projections from cortical systems involved in affect and cognitive control and determined the age-related differences in their relative structural integrity. Results indicate that the relative integrity of affective projections, in relation to projections from cognitive control systems, decreases with age and is positively associated with reward-driven task performance. Together, these findings provide new evidence that developmental differences in the integration of corticostriatal networks involved in affect and cognitive control underlie known developmental decreases in the propensity for reward-driven behavior into adulthood.


Assuntos
Afeto/fisiologia , Córtex Cerebral/crescimento & desenvolvimento , Cognição/fisiologia , Corpo Estriado/crescimento & desenvolvimento , Vias Neurais/fisiologia , Recompensa , Adolescente , Adulto , Fatores Etários , Anisotropia , Atenção/fisiologia , Mapeamento Encefálico , Córtex Cerebral/diagnóstico por imagem , Criança , Corpo Estriado/diagnóstico por imagem , Feminino , Lateralidade Funcional , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/diagnóstico por imagem , Oxigênio/sangue , Análise de Regressão , Caracteres Sexuais , Adulto Jovem
4.
Exp Brain Res ; 236(2): 529-537, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29243134

RESUMO

When making risky spatial decisions, humans incorporate estimates of sensorimotor variability and costs on outcomes to bias their spatial selections away from regions that incur feedback penalties. Since selection variability depends on the reliability of sensory signals, increasing the spatial variance of targets during visually guided actions should increase the degree of this avoidance. Healthy adult participants (N = 20) used a computer mouse to indicate their selection of the mean of a target, represented as a 2D Gaussian distribution of dots presented on a computer display. Reward feedback on each trial corresponded to the estimation error of the selection. Either increasing or decreasing the spatial variance of the dots modulated the spatial uncertainty of the target. A non-target distractor cue was presented as an adjacent distribution of dots. On a subset of trials, feedback scores were penalized with increased proximity to the distractor mean. As expected, increasing the spatial variance of the target distribution increased selection variability. More importantly, on trials where proximity to the distractor cue incurred a penalty, increasing variance of the target increased selection bias away from the distractor cue and prolonged reaction times. These results confirm predictions that increased sensory uncertainty increases avoidance during risky spatial decisions.


Assuntos
Tomada de Decisões , Desempenho Psicomotor/fisiologia , Incerteza , Percepção Visual/fisiologia , Adolescente , Feminino , Humanos , Masculino , Estimulação Luminosa , Tempo de Reação/fisiologia , Adulto Jovem
5.
PLoS Comput Biol ; 12(11): e1005203, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27846212

RESUMO

Quantifying differences or similarities in connectomes has been a challenge due to the immense complexity of global brain networks. Here we introduce a noninvasive method that uses diffusion MRI to characterize whole-brain white matter architecture as a single local connectome fingerprint that allows for a direct comparison between structural connectomes. In four independently acquired data sets with repeated scans (total N = 213), we show that the local connectome fingerprint is highly specific to an individual, allowing for an accurate self-versus-others classification that achieved 100% accuracy across 17,398 identification tests. The estimated classification error was approximately one thousand times smaller than fingerprints derived from diffusivity-based measures or region-to-region connectivity patterns for repeat scans acquired within 3 months. The local connectome fingerprint also revealed neuroplasticity within an individual reflected as a decreasing trend in self-similarity across time, whereas this change was not observed in the diffusivity measures. Moreover, the local connectome fingerprint can be used as a phenotypic marker, revealing 12.51% similarity between monozygotic twins, 5.14% between dizygotic twins, and 4.51% between none-twin siblings, relative to differences between unrelated subjects. This novel approach opens a new door for probing the influence of pathological, genetic, social, or environmental factors on the unique configuration of the human connectome.


Assuntos
Encéfalo/anatomia & histologia , Conectoma/métodos , Imagem de Tensor de Difusão/métodos , Interpretação de Imagem Assistida por Computador/métodos , Técnica de Subtração , Substância Branca/anatomia & histologia , Adulto , Algoritmos , Feminino , Humanos , Aumento da Imagem/métodos , Masculino , Reconhecimento Automatizado de Padrão/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Adulto Jovem
6.
J Neurosci ; 35(9): 3865-78, 2015 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-25740516

RESUMO

Modification of spatial attention via reinforcement learning (Lee and Shomstein, 2013) requires the integration of reward, attention, and executive processes. Corticostriatal pathways are an ideal neural substrate for this integration because these projections exhibit a globally parallel (Alexander et al., 1986), but locally overlapping (Haber, 2003), topographical organization. Here we explore whether there are unique striatal regions that exhibit convergent anatomical connections from orbitofrontal cortex, dorsolateral prefrontal cortex, and posterior parietal cortex. Deterministic fiber tractography on diffusion spectrum imaging data from neurologically healthy adults (N = 60) was used to map frontostriatal and parietostriatal projections. In general, projections from cortex were organized according to both a medial-lateral and a rostral-caudal gradient along the striatal nuclei. Within rostral aspects of the striatum, we identified two bilateral convergence zones (one in the caudate nucleus and another in the putamen) that consisted of voxels with unique projections from orbitofrontal cortex, dorsolateral prefrontal cortex, and parietal regions. The distributed cortical connectivity of these striatal convergence zones was confirmed with follow-up functional connectivity analysis from resting state fMRI data, in which a high percentage of structurally connected voxels also showed significant functional connectivity. The specificity of this convergent architecture to these regions of the rostral striatum was validated against control analysis of connectivity within the motor putamen. These results delineate a neurologically plausible network of converging corticostriatal projections that may support the integration of reward, executive control, and spatial attention that occurs during spatial reinforcement learning.


Assuntos
Córtex Cerebral/fisiologia , Corpo Estriado/fisiologia , Vias Neurais/fisiologia , Adolescente , Adulto , Núcleo Caudado/fisiologia , Imagem de Difusão por Ressonância Magnética , Feminino , Lobo Frontal/fisiologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Lobo Parietal/fisiologia , Córtex Pré-Frontal/fisiologia , Putamen/fisiologia , Adulto Jovem
7.
Neuroimage ; 131: 91-101, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-26439513

RESUMO

White matter structure declines with advancing age and has been associated with a decline in memory and executive processes in older adulthood. Yet, recent research suggests that higher physical activity and fitness levels may be associated with less white matter degeneration in late life, although the tract-specificity of this relationship is not well understood. In addition, these prior studies infrequently associate measures of white matter microstructure to cognitive outcomes, so the behavioral importance of higher levels of white matter microstructural organization with greater fitness levels remains a matter of speculation. Here we tested whether cardiorespiratory fitness (VO2max) levels were associated with white matter microstructure and whether this relationship constituted an indirect pathway between cardiorespiratory fitness and spatial working memory in two large, cognitively and neurologically healthy older adult samples. Diffusion tensor imaging was used to determine white matter microstructure in two separate groups: Experiment 1, N=113 (mean age=66.61) and Experiment 2, N=154 (mean age=65.66). Using a voxel-based regression approach, we found that higher VO2max was associated with higher fractional anisotropy (FA), a measure of white matter microstructure, in a diverse network of white matter tracts, including the anterior corona radiata, anterior internal capsule, fornix, cingulum, and corpus callosum (PFDR-corrected<.05). This effect was consistent across both samples even after controlling for age, gender, and education. Further, a statistical mediation analysis revealed that white matter microstructure within these regions, among others, constituted a significant indirect path between VO2max and spatial working memory performance. These results suggest that greater aerobic fitness levels are associated with higher levels of white matter microstructural organization, which may, in turn, preserve spatial memory performance in older adulthood.


Assuntos
Envelhecimento/patologia , Envelhecimento/fisiologia , Encéfalo/citologia , Aptidão Cardiorrespiratória/fisiologia , Memória de Curto Prazo/fisiologia , Memória Espacial/fisiologia , Substância Branca/citologia , Idoso , Idoso de 80 Anos ou mais , Encéfalo/fisiologia , Mapeamento Encefálico , Imagem de Tensor de Difusão/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Rede Nervosa/citologia , Rede Nervosa/fisiologia , Plasticidade Neuronal/fisiologia , Consumo de Oxigênio/fisiologia , Substância Branca/fisiologia
8.
J Neurophysiol ; 116(3): 920-37, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27281745

RESUMO

Functional magnetic resonance imaging (fMRI) evidence indicates that different subregions of ventrolateral prefrontal cortex (VLPFC) participate in distinct cortical networks. These networks have been shown to support separable cognitive functions: anterior VLPFC [inferior frontal gyrus (IFG) pars orbitalis] functionally correlates with a ventral fronto-temporal network associated with top-down influences on memory retrieval, while mid-VLPFC (IFG pars triangularis) functionally correlates with a dorsal fronto-parietal network associated with postretrieval control processes. However, it is not known to what extent subregional differences in network affiliation and function are driven by differences in the organization of underlying white matter pathways. We used high-angular-resolution diffusion spectrum imaging and functional connectivity analysis in unanesthetized humans to address whether the organization of white matter connectivity differs between subregions of VLPFC. Our results demonstrate a ventral-dorsal division within IFG. Ventral IFG as a whole connects broadly to lateral temporal cortex. Although several different individual white matter tracts form connections between ventral IFG and lateral temporal cortex, functional connectivity analysis of fMRI data indicates that these are part of the same ventral functional network. By contrast, across subdivisions, dorsal IFG was connected with the midfrontal gyrus and correlated as a separate dorsal functional network. These qualitative differences in white matter organization within larger macroanatomical subregions of VLPFC support prior functional distinctions among these regions observed in task-based and functional connectivity fMRI studies. These results are consistent with the proposal that anatomical connectivity is a crucial determinant of systems-level functional organization of frontal cortex and the brain in general.


Assuntos
Mapeamento Encefálico , Lateralidade Funcional/fisiologia , Rememoração Mental/fisiologia , Vias Neurais/fisiologia , Córtex Pré-Frontal/fisiologia , Substância Branca/fisiologia , Adulto , Análise de Variância , Imagem de Difusão por Ressonância Magnética , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiologia , Vias Neurais/diagnóstico por imagem , Testes Neuropsicológicos , Córtex Pré-Frontal/diagnóstico por imagem , Substância Branca/diagnóstico por imagem
9.
J Neurophysiol ; 112(10): 2457-69, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25143543

RESUMO

Accurately making a decision in the face of incongruent options increases the efficiency of making similar congruency decisions in the future. Contextual factors like reward can modulate this adaptive process, suggesting that networks associated with monitoring previous success and failure outcomes might contribute to this form of behavioral updating. To evaluate this possibility, a group of healthy adults (n = 30) were tested with functional MRI (fMRI) while they performed a color-word Stroop task. In a conflict-related region of the medial orbitofrontal cortex (mOFC), stronger BOLD responses predicted faster response times (RTs) on the next trial. More importantly, the degree of behavioral adaptation of RTs was correlated with the magnitude of mOFC-RT associations on the previous trial, but only after accounting for network-level interactions with prefrontal and striatal regions. This suggests that congruency sequencing effects may rely on interactions between distributed corticostriatal circuits. This possibility was evaluated by measuring the convergence of white matter projections from frontal areas into the striatum with diffusion-weighted imaging. In these pathways, greater convergence of corticostriatal projections correlated with stronger functional mOFC-RT associations that, in turn, provided an indirect pathway linking anatomical structure to behavior. Thus distributed corticostriatal processing may mediate the orbitofrontal cortex's influence on behavioral updating, even in the absence of explicit rewards.


Assuntos
Corpo Estriado/fisiologia , Tomada de Decisões/fisiologia , Função Executiva/fisiologia , Lobo Frontal/fisiologia , Desempenho Psicomotor/fisiologia , Adulto , Mapeamento Encefálico , Circulação Cerebrovascular/fisiologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Vias Neurais/fisiologia , Oxigênio/sangue , Tempo de Reação/fisiologia , Teste de Stroop , Adulto Jovem
10.
Cereb Cortex ; 23(9): 2058-71, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22772650

RESUMO

Socioeconomic disadvantage confers risk for aspects of ill health that may be mediated by systemic inflammatory influences on the integrity of distributed brain networks. Following this hypothesis, we tested whether socioeconomic disadvantage related to the structural integrity of white matter tracts connecting brain regions of distributed networks, and whether such a relationship would be mediated by anthropometric, behavioral, and molecular risk factors associated with systemic inflammation. Otherwise healthy adults (N= 155, aged 30-50 years, 78 men) completed protocols assessing multilevel indicators of socioeconomic position (SEP), anthropometric and behavioral measures of adiposity and cigarette smoking, circulating levels of C-reactive protein (CRP), and white matter integrity by diffusion tensor imaging. Mediation modeling was used to test associations between SEP indicators and measures of white matter tract integrity, as well as indirect mediating paths. Measures of tract integrity followed a socioeconomic gradient: individuals completing more schooling, earning higher incomes, and residing in advantaged neighborhoods exhibited increases in white matter fractional anisotropy and decreases in radial diffusivity, relative to disadvantaged individuals. Moreover, analysis of indirect paths showed that adiposity, cigarette smoking, and CRP partially mediated these effects. Socioeconomic inequalities may relate to diverse health disparities via inflammatory pathways impacting the structural integrity of brain networks.


Assuntos
Córtex Cerebral/patologia , Inflamação , Adulto , Proteína C-Reativa/análise , Imagem de Tensor de Difusão , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fatores Socioeconômicos
11.
bioRxiv ; 2024 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-38260308

RESUMO

Resting heart rate may confer risk for cardiovascular disease (CVD) and other adverse cardiovascular events. While the brainstem's autonomic control over heart rate is well established, less is known about the regulatory role of higher-level cortical and subcortical brain regions, especially in humans. The present study sought to characterize the brain networks that predict variation in prevailing heart rate in otherwise healthy adults. We used machine learning approaches designed for complex, high-dimensional datasets, to predict variation in instantaneous heart period (the inter-heartbeat-interval) from whole brain hemodynamic signals measured by fMRI. Task-based and resting-state fMRI, as well as peripheral physiological recordings, were taken from two datasets that included extensive repeated measurements within individuals. Our models reliably predicted instantaneous heart period from whole brain fMRI data both within and across individuals, with prediction accuracies being highest when measured within-participants. We found that a network of cortical and subcortical brain regions, many linked to psychological stress, were reliable predictors of variation in heart period. This adds to evidence on brain-heart interactions and constitutes an incremental step towards developing clinically-applicable biomarkers of brain contributions to CVD risk.

12.
medRxiv ; 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38370849

RESUMO

Background: Cardiovascular responses to psychological stressors have been separately associated with preclinical atherosclerosis and hemodynamic brain activity patterns across different studies and cohorts; however, what has not been established is whether cardiovascular stress responses reliably link indicators of stressor-evoked brain activity and preclinical atherosclerosis that have been measured in the same individuals. Accordingly, the present study used cross-validation and predictive modeling to test for the first time whether stressor-evoked systolic blood pressure (SBP) responses statistically mediated the association between concurrently measured brain activity and a vascular marker of preclinical atherosclerosis in the carotid arteries. Methods: 624 midlife adults (aged 28-56 years, 54.97% female) from two different cohorts underwent two information-conflict fMRI tasks, with concurrent SBP measures collected. Carotid artery intima-media thickness (CA-IMT) was measured by ultrasonography. A mediation framework that included harmonization, cross-validation, and penalized principal component regression was then employed, while significant areas in possible direct and indirect effects were identified through bootstrapping. Sensitivity analysis further tested the robustness of findings after accounting for prevailing levels of cardiovascular disease risk and brain imaging data quality control. Results: Task-averaged patterns of hemodynamic brain responses exhibited a generalizable association with CA-IMT, which was mediated by an area-under-the-curve measure of aggregate SBP reactivity. Importantly, this effect held in sensitivity analyses. Implicated brain areas in this mediation included the ventromedial prefrontal cortex, anterior cingulate cortex, insula and amygdala. Conclusions: These novel findings support a link between stressor-evoked brain activity and preclinical atherosclerosis accounted for by individual differences in corresponding levels of stressor-evoked cardiovascular reactivity.

13.
Neuroimage ; 79: 129-37, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23639257

RESUMO

Being overweight or obese is associated with reduced white matter integrity throughout the brain. It is not yet clear which physiological systems mediate the association between inter-individual variation in adiposity and white matter. We tested whether composite indicators of cardiovascular, lipid, glucose, and inflammatory factors would mediate the adiposity-related variation in white matter microstructure, measured with diffusion tensor imaging on a group of neurologically healthy adults (N=155). A composite factor representing adiposity (comprised of body mass index and waist circumference) was associated with smaller fractional anisotropy and greater radial diffusivity throughout the brain, a pattern previously linked to myelin structure changes in non-human animal models. A similar global negative association was found for factors representing inflammation and, to a lesser extent, glucose regulation. In contrast, factors for blood pressure and dyslipidemia had positive associations with white matter in isolated brain regions. Taken together, these competing influences on the diffusion signal were significant mediators linking adiposity to white matter and explained up to fifty-percent of the adiposity-white matter variance. These results provide the first evidence for contrasting physiological pathways, a globally distributed immunity-linked negative component and a more localized vascular-linked positive component, that associate adiposity to individual differences in the microstructure of white matter tracts in otherwise healthy adults.


Assuntos
Gordura Abdominal/fisiologia , Adiposidade/fisiologia , Índice de Massa Corporal , Encéfalo/fisiologia , Encéfalo/ultraestrutura , Fibras Nervosas Mielinizadas/ultraestrutura , Circunferência da Cintura/fisiologia , Adulto , Imagem de Tensor de Difusão , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estatística como Assunto
14.
J Neurophysiol ; 107(11): 2984-95, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22378170

RESUMO

The axons that project into the striatum are known to segregate according to macroscopic cortical systems; however, the within-region organization of these fibers has yet to be described in humans. We used in vivo fiber tractography, in neurologically healthy adults, to map white matter bundles that originate in different neocortical areas, navigate complex fiber crossings, and project into the striatum. As expected, these fibers were generally segregated according to cortical origin. Within a subset of pathways, a patched pattern of inputs was observed, consistent with previous ex vivo histological studies. In projections from the prefrontal cortex, we detected a topography in which fibers from rostral prefrontal areas projected mostly to rostral parts of the striatum and vice versa for inputs originating in caudal cortical areas. Importantly, within this prefrontal system there was also an asymmetry in the subset of divergent projections, with more fibers projecting in a posterior direction than anterior. This asymmetry of information projecting into the basal ganglia was predicted by previous network-level computational models. A rostral-caudal topography was also present at the local level in otherwise somatotopically organized fibers projecting from the motor cortex. This provides clear evidence that the longitudinal organization of input fields, observed at the macroscopic level across cortical systems, is also found at the microstructural scale at which information is segregated as it enters the human basal ganglia.


Assuntos
Corpo Estriado/fisiologia , Córtex Motor/fisiologia , Fibras Nervosas Mielinizadas/fisiologia , Córtex Pré-Frontal/fisiologia , Adulto , Córtex Cerebral/fisiologia , Feminino , Humanos , Masculino , Vias Neurais/fisiologia , Adulto Jovem
15.
Psychosom Med ; 74(7): 682-90, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22879428

RESUMO

OBJECTIVE: Obesity and decreased physical health are linked to deficits in several cognitive domains. The broad range of cognitive problems linked to obesity suggests a global mechanism that may interfere with multiple neural systems. We examined how variation in body mass index (BMI) is associated with the microstructural integrity of fiber connections in the human brain. METHODS: White matter structure was measured using diffusion tensor imaging in 28 participants (mean age = 30 years) with BMI scores ranging from normal weight to obese (19.5-45.7 kg/m(2)) based on standard BMI criteria. RESULTS: Using a whole-brain voxelwise analysis, we found that, across participants, the fractional anisotropy of white matter voxels parametrically decreased with increasing BMI (63% of white matter voxels). Midbrain and brainstem tracts were among the pathways most strongly associated with obesity (r = -0.18 to -0.33, df = 27, all p values < .05). We also observed a weaker overall diffusion signal in individuals with higher BMI than controls with normal weight (r = -0.14 to -0.71, df = 27, for 67% of fiber pathways tested, all p values < .05). After controlling for this decrease in general diffusivity, we found that decreases in fractional anisotropy stemmed from both a decrease in axial diffusivity (p < .05) and an increase in radial diffusivity (p < .05). CONCLUSIONS: Our results show that increased BMI is globally associated with a reduction in white matter integrity throughout the brain, elucidating a potential mechanism by which changes in physical health may influence cognitive health.


Assuntos
Índice de Massa Corporal , Encéfalo/patologia , Transtornos Cognitivos/patologia , Fibras Nervosas Mielinizadas/patologia , Obesidade/patologia , Adolescente , Adulto , Idoso , Anisotropia , Tronco Encefálico/patologia , Transtornos Cognitivos/complicações , Imagem de Tensor de Difusão , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Mesencéfalo/patologia , Pessoa de Meia-Idade , Obesidade Mórbida/patologia , Sobrepeso/patologia
16.
Neuroimage Clin ; 35: 103134, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36002967

RESUMO

BACKGROUND: Human neuroimaging evidence suggests that cardiovascular disease (CVD) risk may relate to functional and structural features of the brain. The present study tested whether combining functional and structural (multimodal) brain measures, derived from magnetic resonance imaging (MRI), would yield a multivariate brain biomarker that reliably predicts a subclinical marker of CVD risk, carotid-artery intima-media thickness (CA-IMT). METHODS: Neuroimaging, cardiovascular, and demographic data were assessed in 324 midlife and otherwise healthy adults who were free of (a) clinical CVD and (b) use of medications for chronic illnesses (aged 30-51 years, 49% female). We implemented a prediction stacking algorithm that combined multimodal brain imaging measures and Framingham Risk Scores (FRS) to predict CA-IMT. We included imaging measures that could be easily obtained in clinical settings: resting state functional connectivity and structural morphology measures from T1-weighted images. RESULTS: Our models reliably predicted CA-IMT using FRS, as well as for several individual MRI measures; however, none of the individual MRI measures outperformed FRS. Moreover, stacking functional and structural brain measures with FRS did not boost prediction accuracy above that of FRS alone. CONCLUSIONS: Combining multimodal functional and structural brain measures through a stacking algorithm does not appear to yield a reliable brain biomarker of subclinical CVD, as reflected by CA-IMT.


Assuntos
Aterosclerose , Espessura Intima-Media Carotídea , Adulto , Aterosclerose/diagnóstico por imagem , Biomarcadores , Encéfalo/diagnóstico por imagem , Feminino , Humanos , Masculino , Neuroimagem , Valor Preditivo dos Testes , Fatores de Risco
17.
Affect Sci ; 3(2): 406-424, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36046001

RESUMO

Cognitive reappraisal is an emotion regulation strategy that is postulated to reduce risk for atherosclerotic cardiovascular disease (CVD), particularly the risk due to negative affect. At present, however, the brain systems and vascular pathways that may link reappraisal to CVD risk remain unclear. This study thus tested whether brain activity evoked by using reappraisal to reduce negative affect would predict the multiyear progression of a vascular marker of preclinical atherosclerosis and CVD risk: carotid artery intima-media thickness (CA-IMT). Participants were 176 otherwise healthy adults (50.6% women; aged 30-51 years) who completed a functional magnetic resonance imaging task involving the reappraisal of unpleasant scenes from the International Affective Picture System. Ultrasonography was used to compute CA-IMT at baseline and a median of 2.78 (interquartile range, 2.67 to 2.98) years later among 146 participants. As expected, reappraisal engaged brain systems implicated in emotion regulation. Reappraisal also reduced self-reported negative affect. On average, CA-IMT progressed over the follow-up period. However, multivariate and cross-validated machine-learning models demonstrated that brain activity during reappraisal failed to predict CA-IMT progression. Contrary to hypotheses, brain activity during cognitive reappraisal to reduce negative affect does not appear to forecast the progression of a vascular marker of CVD risk. Supplementary Information: The online version contains supplementary material available at 10.1007/s42761-021-00098-y.

18.
Neuroimage ; 55(4): 1633-44, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21224001

RESUMO

The BOLD signal not only reflects changes in local neural activity, but also exhibits variability from physiological processes like cardiac rhythms and breathing. We investigated how both of these physiological sources are reflected in the pulse oximetry (PO) signal, a direct measure of blood oxygenation, and how this information can be used to account for different types of noise in the BOLD response. Measures of heart rate, respiration and PO were simultaneously recorded while neurologically healthy participants performed an eye-movement task in a 3T MRI. PO exhibited power in frequencies that matched those found in the independently recorded cardiac and respiration signals. Using the phasic and aphasic properties of these signals as nuisance regressors, we found that the different frequency components of the PO signal could be used to identify different types of physiological artifacts in the BOLD response. A comparison of different physiological noise models found that a simple, down-sampled version of the PO signal improves the estimation of task-relevant statistics nearly as well as more established noise models that may run the risk of over-parameterization. These findings suggest that the PO signal captures multiple sources of physiological noise in the BOLD response and provides a simple and efficient way of modeling these noise sources in subsequent analysis.


Assuntos
Artefatos , Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Eletroencefalografia/métodos , Potencial Evocado Motor/fisiologia , Movimentos Oculares/fisiologia , Oximetria/métodos , Adulto , Humanos , Masculino , Consumo de Oxigênio/fisiologia , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Adulto Jovem
19.
Soc Cogn Affect Neurosci ; 15(10): 1034-1045, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-32301993

RESUMO

This study tested whether brain activity patterns evoked by affective stimuli relate to individual differences in an indicator of pre-clinical atherosclerosis: carotid artery intima-media thickness (CA-IMT). Adults (aged 30-54 years) completed functional magnetic resonance imaging (fMRI) tasks that involved viewing three sets of affective stimuli. Two sets included facial expressions of emotion, and one set included neutral and unpleasant images from the International Affective Picture System (IAPS). Cross-validated, multivariate and machine learning models showed that individual differences in CA-IMT were partially predicted by brain activity patterns evoked by unpleasant IAPS images, even after accounting for age, sex and known cardiovascular disease risk factors. CA-IMT was also predicted by brain activity patterns evoked by angry and fearful faces from one of the two stimulus sets of facial expressions, but this predictive association did not persist after accounting for known cardiovascular risk factors. The reliability (internal consistency) of brain activity patterns evoked by affective stimuli may have constrained their prediction of CA-IMT. Distributed brain activity patterns could comprise affective neural correlates of pre-clinical atherosclerosis; however, the interpretation of such correlates may depend on their psychometric properties, as well as the influence of other cardiovascular risk factors and specific affective cues.


Assuntos
Encéfalo/diagnóstico por imagem , Doenças Cardiovasculares/diagnóstico por imagem , Emoções/fisiologia , Individualidade , Adulto , Aterosclerose/diagnóstico por imagem , Mapeamento Encefálico , Espessura Intima-Media Carotídea , Sinais (Psicologia) , Expressão Facial , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes
20.
Contemp Clin Trials ; 85: 105832, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31465859

RESUMO

Despite the ubiquity of normal age-related cognitive decline there is an absence of effective approaches for improving neurocognitive health. Fortunately, moderate intensity exercise is a promising method for improving brain and cognitive health in late life, but its effectiveness remains a matter of skepticism and debate because of the absence of large, comprehensive, Phase III clinical trials. Here we describe the protocol for such a randomized clinical trial called IGNITE (Investigating Gains in Neurocognition in an Intervention Trial of Exercise), a study capable of more definitively addressing whether exercise influences cognitive and brain health in cognitively normal older adults. We are conducting a 12-month, multi-site, randomized dose-response exercise trial in 639 cognitively normal adults between 65 and 80 years of age. Participants are randomized to (1) a moderate intensity aerobic exercise condition of 150 min/week (N = 213), (2) a moderate intensity aerobic exercise condition at 225 min/week (N = 213), or (3) a light intensity stretching-and-toning control condition for 150 min/week (N = 213). Participants are engaging in 3 days/week of supervised exercise and two more days per week of unsupervised exercise for 12 months. A comprehensive cognitive battery, blood biomarkers and battery of psychosocial questionnaires is assessed at baseline, 6 and 12-months. In addition, brain magnetic resonance imaging, physiological biomarkers, cardiorespiratory fitness, physical function, and positron emission tomography of amyloid deposition are assessed at baseline and at the 12-month follow-up. The results from this trial could transform scientific-based policy and health care recommendations for approaches to improve cognitive function in cognitively normal older adults.


Assuntos
Cognição , Exercício Físico , Absorciometria de Fóton , Idoso , Idoso de 80 Anos ou mais , Encéfalo/diagnóstico por imagem , Aptidão Cardiorrespiratória , Cognição/fisiologia , Envelhecimento Cognitivo/fisiologia , Envelhecimento Cognitivo/psicologia , Exercício Físico/fisiologia , Exercício Físico/psicologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Neuroimagem , Testes Neuropsicológicos , Análise de Onda de Pulso , Ensaios Clínicos Controlados Aleatórios como Assunto , Inquéritos e Questionários
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA