RESUMO
Spins confined to point defects in atomically thin semiconductors constitute well-defined atomic-scale quantum systems that are being explored as single-photon emitters and spin qubits. Here, we investigate the in-gap electronic structure of individual sulfur vacancies in molybdenum disulfide (MoS2) monolayers using resonant tunneling scanning probe spectroscopy in the Coulomb blockade regime. Spectroscopic mapping of defect wave functions reveals an interplay of local symmetry breaking by a charge-state-dependent Jahn-Teller lattice distortion that, when combined with strong (≃100 meV) spin-orbit coupling, leads to a locking of an unpaired spin-1/2 magnetic moment to the lattice at low temperature, susceptible to lattice strain. Our results provide new insights into the spin and electronic structure of vacancy-induced in-gap states toward their application as electrically and optically addressable quantum systems.
RESUMO
Two-dimensional (2D) semiconductors with point defects are predicted to host a variety of bound exciton complexes analogous to trions and biexcitons due to strong many-body effects. However, despite the common observation of defect-mediated subgap emission, the existence of such complexes remains elusive. Here, we report the observation of bound exciton (BX) complex manifolds in monolayer MoSe2 with intentionally created monoselenium vacancies (VSe) using proton beam irradiation. The emission intensity of different BX peaks is found to exhibit contrasting dependence on electrostatic doping near the onset of free electron injection. The observed trend is consistent with the model in which free excitons exist in equilibrium with excitons bound to neutral and charged VSe defects, which act as deep acceptors. These complexes are more strongly bound than trions and biexcitons, surviving up to around 180 K, and exhibit moderate valley polarization memory, indicating partial free exciton character.
RESUMO
Strong many-body interactions in two-dimensional (2D) semiconductors give rise to efficient exciton-exciton annihilation (EEA). This process is expected to result in the generation of unbound high energy carriers. Here, we report an unconventional photoresponse of van der Waals heterostructure devices resulting from efficient EEA. Our heterostructures, which consist of monolayer transition metal dichalcogenide (TMD), hexagonal boron nitride (hBN), and few-layer graphene, exhibit photocurrent when photoexcited carriers possess sufficient energy to overcome the high energy barrier of hBN. Interestingly, we find that the device exhibits moderate photocurrent quantum efficiency even when the semiconducting TMD layer is excited at its ground exciton resonance despite the high exciton binding energy and large transport barrier. Using ab initio calculations, we show that EEA yields highly energetic electrons and holes with unevenly distributed energies depending on the scattering condition. Our findings highlight the dominant role of EEA in determining the photoresponse of 2D semiconductor optoelectronic devices.
RESUMO
Monolayer WSe2 exhibits luminescence arising from various types of exciton complexes due to strong many-body effects. Here, we demonstrate selective electrical excitation of positive and negative trions in van der Waals metal-insulator-semiconductor (MIS) heterostructure consisting of few-layer graphene (FLG), hexagonal boron nitride (hBN), and monolayer WSe2. Intentional unbalanced injection of electrons and holes is achieved via field-emission tunneling and electrostatic accumulation. The device exhibits planar electroluminescence from either positive trion X+ or negative trion X- depending on the bias conditions. We show that hBN serves as a tunneling barrier material allowing selective injection of electron or holes into WSe2 from FLG layer. Our observation offers prospects for hot carrier injection, trion manipulation, and on-chip excitonic devices based on two-dimensional semiconductors.
RESUMO
Due to their layered structure, two-dimensional Ruddlesden-Popper perovskites (RPPs), composed of multiple organic/inorganic quantum wells, can in principle be exfoliated down to few and single layers. These molecularly thin layers are expected to present unique properties with respect to the bulk counterpart, due to increased lattice deformations caused by interface strain. Here, we have synthesized centimetre-sized, pure-phase single-crystal RPP perovskites (CH3(CH2)3NH3)2(CH3NH3)n-1PbnI3n+1 (n = 1-4) from which single quantum well layers have been exfoliated. We observed a reversible shift in excitonic energies induced by laser annealing on exfoliated layers encapsulated by hexagonal boron nitride. Moreover, a highly efficient photodetector was fabricated using a molecularly thin n = 4 RPP crystal, showing a photogain of 105 and an internal quantum efficiency of ~34%. Our results suggest that, thanks to their dynamic structure, atomically thin perovskites enable an additional degree of control for the bandgap engineering of these materials.
RESUMO
We report on efficient carrier-to-exciton conversion and planar electroluminescence from tunnel diodes based on a metal-insulator-semiconductor (MIS) van der Waals heterostack consisting of few-layer graphene (FLG), hexagonal boron nitride (hBN), and monolayer tungsten disulfide (WS2). These devices exhibit excitonic electroluminescence with extremely low threshold current density of a few pA·µm-2, which is several orders of magnitude lower compared to the previously reported values for the best planar EL devices. Using a reference dye, we estimate the EL quantum efficiency to be â¼1% at low current density limit, which is of the same order of magnitude as photoluminescence quantum yield at the equivalent excitation rate. Our observations reveal that the efficiency of our devices is not limited by carrier-to-exciton conversion efficiency but by the inherent exciton-to-photon yield of the material. The device characteristics indicate that the light emission is triggered by injection of hot minority carriers (holes) to n-doped WS2 by Fowler-Nordheim tunneling and that hBN serves as an efficient hole-transport and electron-blocking layer. Our findings offer insight into the intelligent design of van der Waals heterostructures and avenues for realizing efficient excitonic devices.
RESUMO
The 2H-to-1T' phase transition in transition metal dichalcogenides (TMDs) has been exploited to phase-engineer TMDs for applications in which the metallicity of the 1T' phase is beneficial. However, phase-engineered 1T'-TMDs are metastable; thus, stabilization of the 1T' phase remains an important challenge to overcome before its properties can be exploited. Herein, we performed a systematic study of the 2H-to-1T' phase evolution by lithiation in ultrahigh vacuum. We discovered that by hydrogenating the intercalated Li to form lithium hydride (LiH), unprecedented long-term (>3 months) air stability of the 1T' phase can be achieved. Most importantly, this passivation method has wide applicability for other alkali metals and TMDs. Density functional theory calculations reveal that LiH is a good electron donor and stabilizes the 1T' phase against 2H conversion, aided by the formation of a greatly enhanced interlayer dipole-dipole interaction. Nonlinear optical studies reveal that air-stable 1T'-TMDs exhibit much stronger optical Kerr nonlinearity and higher optical transparency than the 2H phase, which is promising for nonlinear photonic applications.
RESUMO
Strongly bound excitons confined in two-dimensional (2D) semiconductors are dipoles with a perfect in-plane orientation. In a vertical stack of semiconducting 2D crystals, such in-plane excitonic dipoles are expected to efficiently couple across van der Waals gap due to strong interlayer Coulomb interaction and exchange their energy. However, previous studies on heterobilayers of group 6 transition metal dichalcogenides (TMDs) found that the exciton decay dynamics is dominated by interlayer charge transfer (CT) processes. Here, we report an experimental observation of fast interlayer energy transfer (ET) in MoSe2/WS2 heterostructures using photoluminescence excitation (PLE) spectroscopy. The temperature dependence of the transfer rates suggests that the ET is Förster-type involving excitons in the WS2 layer resonantly exciting higher-order excitons in the MoSe2 layer. The estimated ET time of the order of 1 ps is among the fastest compared to those reported for other nanostructure hybrid systems such as carbon nanotube bundles. Efficient ET in these systems offers prospects for optical amplification and energy harvesting through intelligent layer engineering.
RESUMO
Bottom-up approaches allow the production of ultranarrow and atomically precise graphene nanoribbons (GNRs) with electronic and optical properties controlled by the specific atomic structure. Combining Raman spectroscopy and ab initio simulations, we show that GNR width, edge geometry, and functional groups all influence their Raman spectra. The low-energy spectral region below 1000 cm(-1) is particularly sensitive to edge morphology and functionalization, while the D peak dispersion can be used to uniquely fingerprint the presence of GNRs and differentiates them from other sp(2) carbon nanostructures.
RESUMO
Excitons are key to the optoelectronic applications of van der Waals semiconductors, with the potential for versatile on-demand tuning of properties. Yet, their electrical manipulation remains challenging due to inherent charge neutrality and the additional loss channels induced by electrical doping. We demonstrate the dynamic electrical control of valley polarization in charged excitonic states of monolayer tungsten disulfide, achieving up to a 6-fold increase in the degree of circular polarization under off-resonant excitation. In contrast to the weak direct tuning of excitons typically observed using electrical gating, the charged exciton photoluminescence remains stable, even with increased scattering from electron doping. By exciting at the exciton resonances, we observed the reproducible nonmonotonic switching of the charged state population as the electron doping is varied under gate bias, indicating a resonant interplay between neutral and charged exciton states.
RESUMO
Assembling two-dimensional van der Waals (vdW)-layered materials into heterostructures is an exciting development that sparked the discovery of rich correlated electronic phenomena. vdW heterostructures also offer possibilities for designer device applications in areas such as optoelectronics, valley- and spintronics, and quantum technology. However, realizing the full potential of these heterostructures requires interfaces with exceptionally low disorder which is challenging to engineer. Here, we show that thermal scanning probes can be used to create pristine interfaces in vdW heterostructures. Our approach is compatible at both the material- and device levels, and monolayer WS2 transistors show up to an order of magnitude improvement in electrical performance from this technique. We also demonstrate vdW heterostructures with low interface disorder enabling the electrical formation and control of quantum dots that can be tuned from macroscopic current flow to the single-electron tunneling regime.
RESUMO
Tuning magnetic properties in layered van der Waals (vdW) materials has captured significant attention due to the efficient control of ground states by heterostructuring and external stimuli. Electron doping by electrostatic gating, interfacial charge transfer, and intercalation is particularly effective in manipulating the exchange and spin-orbit properties, resulting in a control of Curie temperature (TC) and magnetic anisotropy. Here, an uncharted role of intercalation is discovered to generate magnetic frustration. As a model study, Na atoms are intercalated into the vdW gaps of pristine Cr2Ge2Te6 (CGT) where generated magnetic frustration leads to emerging spin-glass states coexisting with a ferromagnetic order. A series of dynamic magnetic susceptibility measurements/analysis confirms the formation of magnetic clusters representing slow dynamics with a distribution of relaxation times. The intercalation also modifies other macroscopic physical parameters including the significant enhancement of TC from 66 to 240 K and the switching of magnetic easy-hard axis direction. This study identifies intercalation as a unique route to generate emerging frustrated spin states in simple vdW crystals.
RESUMO
The family of 2-dimensional (2D) semiconductors is a subject of intensive scientific research due to their potential in next-generation electronics. While offering many unique properties like atomic thickness and chemically inert surfaces, the integration of 2D semiconductors with conventional dielectric materials is challenging. The charge traps at the semiconductor/dielectric interface are among many issues to be addressed before these materials can be of industrial relevance. Conventional electrical characterization methods remain inadequate to quantify the traps at the 2D semiconductor/dielectric interface since the estimations of the density of interface traps, Dit, by different techniques may yield more than an order-of-magnitude discrepancy, even when extracted from the same device. Therefore, the challenge to quantify Dit at the 2D semiconductor/dielectric interface is about finding an accurate and reliable measurement method. In this review, we discuss characterization techniques which have been used to study the 2D semiconductor/dielectric interface. Specifically, we discuss the methods based on small-signal AC measurements, subthreshold slope measurements and low-frequency noise measurements. While these approaches were developed for silicon-based technology, 2D semiconductor devices possess a set of unique challenges requiring a careful re-evaluation when using these characterization techniques. We examine the conventional methods based on their efficacy and accuracy in differentiating various types of trap states and provide guidance to find an appropriate method for charge trap analysis and estimation of Dit at 2D semiconductor/dielectric interfaces.
RESUMO
2D materials with ferroelectric and piezoelectric properties are of interest for energy harvesting, memory storage and electromechanical systems. Here, we present a systematic study of the ferroelectric properties in NbOX2 (X = Cl, I) across different spatial scales. The in-plane ferroelectricity in NbOX2 was investigated using transport and piezoresponse force microscopy (PFM) measurements, where it was observed that NbOCl2 has a stronger ferroelectric order than NbOI2. A high local field, exerted by both PFM and scanning tunneling microscopy (STM) tips, was found to induce 1D collinear ferroelectric strips in NbOCl2. STM imaging reveals the unreconstructed atomic structures of NbOX2 surfaces, and scanning tunneling spectroscopy was used to probe the electronic states induced at defect (vacancy) sites.
RESUMO
Two-dimensional (2D) van der Waals (vdW) magnets represent one of the most promising horizons for energy-efficient spintronic applications because their broad range of electronic, magnetic and topological properties. However, little is known about the interplay between light and spin properties in vdW layers. Here we show that ultrafast laser excitation can not only generate different type of spin textures in CrGeTe3 vdW magnets but also induce a reversible transformation between them in a topological toggle switch mechanism. Our atomistic spin dynamics simulations and wide-field Kerr microscopy measurements show that different textures can be generated via high-intense laser pulses within the picosecond regime. The phase transformation between the different topological spin textures is obtained as additional laser pulses are applied to the system where the polarisation and final state of the spins can be controlled by external magnetic fields. Our results indicate laser-driven spin textures on 2D magnets as a pathway towards reconfigurable topological architectures at the atomistic level.
RESUMO
Despite over a decade of intense research efforts, the full potential of two-dimensional transition-metal dichalcogenides continues to be limited by major challenges. The lack of compatible and scalable dielectric materials and integration techniques restrict device performances and their commercial applications. Conventional dielectric integration techniques for bulk semiconductors are difficult to adapt for atomically thin two-dimensional materials. This review provides a brief introduction into various common and emerging dielectric synthesis and integration techniques and discusses their applicability for 2D transition metal dichalcogenides. Dielectric integration for various applications is reviewed in subsequent sections including nanoelectronics, optoelectronics, flexible electronics, valleytronics, biosensing, quantum information processing, and quantum sensing. For each application, we introduce basic device working principles, discuss the specific dielectric requirements, review current progress, present key challenges, and offer insights into future prospects and opportunities.
RESUMO
Precisely controlled impurity doping is of fundamental significance in modern semiconductor technologies. Desired physical properties are often achieved at impurity concentrations well below parts per million level. For emergent two-dimensional semiconductors, development of reliable doping strategies is hindered by the inherent difficulty in identifying and quantifying impurities in such a dilute limit where the absolute number of atoms to be detected is insufficient for common analytical techniques. Here we report rapid high-contrast imaging of dilute single atomic impurities by using conductive atomic force microscopy. We show that the local conductivity is enhanced by more than 100-fold by a single impurity atom due to resonance-assisted tunneling. Unlike the closely related scanning tunneling microscopy, the local conductivity sensitively depends on the impurity energy level, allowing minority defects to be selectively imaged. We further demonstrate subsurface impurity detection with single monolayer depth resolution in multilayer materials.
RESUMO
Layered van der Waals (vdW) magnets can maintain a magnetic order even down to the single-layer regime and hold promise for integrated spintronic devices. While the magnetic ground state of vdW magnets was extensively studied, key parameters of spin dynamics, like the Gilbert damping, crucial for designing ultra-fast spintronic devices, remains largely unexplored. Despite recent studies by optical excitation and detection, achieving spin wave control with microwaves is highly desirable, as modern integrated information technologies predominantly are operated with these. The intrinsically small numbers of spins, however, poses a major challenge to this. Here, we present a hybrid approach to detect spin dynamics mediated by photon-magnon coupling between high-Q superconducting resonators and ultra-thin flakes of Cr2Ge2Te6 (CGT) as thin as 11 nm. We test and benchmark our technique with 23 individual CGT flakes and extract an upper limit for the Gilbert damping parameter. These results are crucial in designing on-chip integrated circuits using vdW magnets and offer prospects for probing spin dynamics of monolayer vdW magnets.
RESUMO
Two-dimensional (2D) semiconductors are promising channel materials for continued downscaling of complementary metal-oxide-semiconductor (CMOS) logic circuits. However, their full potential continues to be limited by a lack of scalable high-k dielectrics that can achieve atomically smooth interfaces, small equivalent oxide thicknesses (EOTs), excellent gate control, and low leakage currents. Here, large-area liquid-metal-printed ultrathin Ga2O3 dielectrics for 2D electronics and optoelectronics are reported. The atomically smooth Ga2O3/WS2 interfaces enabled by the conformal nature of liquid metal printing are directly visualized. Atomic layer deposition compatibility with high-k Ga2O3/HfO2 top-gate dielectric stacks on a chemical-vapor-deposition-grown monolayer WS2 is demonstrated, achieving EOTs of â¼1 nm and subthreshold swings down to 84.9 mV/dec. Gate leakage currents are well within requirements for ultrascaled low-power logic circuits. These results show that liquid-metal-printed oxides can bridge a crucial gap in dielectric integration of 2D materials for next-generation nanoelectronics.
RESUMO
Using high-throughput first-principles calculations to search for layered van der Waals materials with the largest piezoelectric stress coefficients, we discover NbOI2 to be the one among 2940 monolayers screened. The piezoelectric performance of NbOI2 is independent of thickness, and its electromechanical coupling factor of near unity is a hallmark of optimal interconversion between electrical and mechanical energy. Laser scanning vibrometer studies on bulk and few-layer NbOI2 crystals verify their huge piezoelectric responses, which exceed internal references such as In2Se3 and CuInP2S6. Furthermore, we provide insights into the atomic origins of anti-correlated piezoelectric and ferroelectric responses in NbOX2 (X = Cl, Br, I), based on bond covalency and structural distortions in these materials. Our discovery that NbOI2 has the largest piezoelectric stress coefficients among 2D materials calls for the development of NbOI2-based flexible nanoscale piezoelectric devices.