Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
PLoS Biol ; 16(7): e2005542, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30005073

RESUMO

Transcription, replication, and repair involve interactions of specific genomic loci with many different proteins. How these interactions are orchestrated at any given location and under changing cellular conditions is largely unknown because systematically measuring protein-DNA interactions at a specific locus in the genome is challenging. To address this problem, we developed Epi-Decoder, a Tag-chromatin immunoprecipitation-Barcode-Sequencing (TAG-ChIP-Barcode-Seq) technology in budding yeast. Epi-Decoder is orthogonal to proteomics approaches because it does not rely on mass spectrometry (MS) but instead takes advantage of DNA sequencing. Analysis of the proteome of a transcribed locus proximal to an origin of replication revealed more than 400 interacting proteins. Moreover, replication stress induced changes in local chromatin proteome composition prior to local origin firing, affecting replication proteins as well as transcription proteins. Finally, we show that native genomic loci can be decoded by efficient construction of barcode libraries assisted by clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9 (CRISPR/Cas9). Thus, Epi-Decoder is an effective strategy to identify and quantify in an unbiased and systematic manner the proteome of an individual genomic locus by DNA sequencing.


Assuntos
Cromatina/metabolismo , Loci Gênicos , Genoma Fúngico , Proteoma/metabolismo , Saccharomyces cerevisiae/genética , Análise de Sequência de DNA , Código de Barras de DNA Taxonômico , Hidroxiureia/farmacologia , Regiões Promotoras Genéticas/genética , Ligação Proteica , Saccharomyces cerevisiae/efeitos dos fármacos , Regiões Terminadoras Genéticas
2.
Mol Cell ; 48(4): 489-90, 2012 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-23200122

RESUMO

In a recent issue of Developmental Cell, Xu et al. (2012) show that a JARID family H3K4 demethylase delays transcriptional quiescence in yeast to produce robust gametes. Similar mechanisms may alter transcriptional programs in other differentiating cell types.

3.
PLoS Biol ; 9(6): e1001075, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21666805

RESUMO

Replicating chromatin involves disruption of histone-DNA contacts and subsequent reassembly of maternal histones on the new daughter genomes. In bulk, maternal histones are randomly segregated to the two daughters, but little is known about the fine details of this process: do maternal histones re-assemble at preferred locations or close to their original loci? Here, we use a recently developed method for swapping epitope tags to measure the disposition of ancestral histone H3 across the yeast genome over six generations. We find that ancestral H3 is preferentially retained at the 5' ends of most genes, with strongest retention at long, poorly transcribed genes. We recapitulate these observations with a quantitative model in which the majority of maternal histones are reincorporated within 400 bp of their pre-replication locus during replication, with replication-independent replacement and transcription-related retrograde nucleosome movement shaping the resulting distributions of ancestral histones. We find a key role for Topoisomerase I in retrograde histone movement during transcription, and we find that loss of Chromatin Assembly Factor-1 affects replication-independent turnover. Together, these results show that specific loci are enriched for histone proteins first synthesized several generations beforehand, and that maternal histones re-associate close to their original locations on daughter genomes after replication. Our findings further suggest that accumulation of ancestral histones could play a role in shaping histone modification patterns.


Assuntos
Histonas/genética , Padrões de Herança/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomycetales/genética , Período de Replicação do DNA , DNA Topoisomerases Tipo I/metabolismo , Genes Fúngicos/genética , Histonas/química , Histonas/metabolismo , Cinética , Modelos Biológicos , Mutação/genética , Nucleossomos/metabolismo , Processamento de Proteína Pós-Traducional , Transcrição Gênica
4.
PLoS Genet ; 7(10): e1002284, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21998594

RESUMO

Dynamic modification of histone proteins plays a key role in regulating gene expression. However, histones themselves can also be dynamic, which potentially affects the stability of histone modifications. To determine the molecular mechanisms of histone turnover, we developed a parallel screening method for epigenetic regulators by analyzing chromatin states on DNA barcodes. Histone turnover was quantified by employing a genetic pulse-chase technique called RITE, which was combined with chromatin immunoprecipitation and high-throughput sequencing. In this screen, the NuB4/HAT-B complex, containing the conserved type B histone acetyltransferase Hat1, was found to promote histone turnover. Unexpectedly, the three members of this complex could be functionally separated from each other as well as from the known interacting factor and histone chaperone Asf1. Thus, systematic and direct interrogation of chromatin structure on DNA barcodes can lead to the discovery of genes and pathways involved in chromatin modification and dynamics.


Assuntos
Epigênese Genética/genética , Regulação Fúngica da Expressão Gênica , Histona Acetiltransferases/metabolismo , Histonas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromatina/genética , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina/genética , Imunoprecipitação da Cromatina , Código de Barras de DNA Taxonômico , Histona Acetiltransferases/genética , Histonas/genética , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Sinais de Exportação Nuclear/genética , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
EMBO Rep ; 12(9): 956-62, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21760613

RESUMO

Post-translational modifications of histone proteins have a crucial role in regulating gene expression. If efficiently re-established after chromosome duplication, histone modifications could help propagate gene expression patterns in dividing cells by epigenetic mechanisms. We used an integrated approach to investigate the dynamics of the conserved methylation of histone H3 Lys 79 (H3K79) by Dot1. Our results show that methylation of H3K79 progressively changes after histone deposition, which is incompatible with a rapid copy mechanism. Instead, methylation accumulates on ageing histones, providing the cell with a timer mechanism to directly couple cell-cycle length to changes in chromatin modification on the nucleosome core.


Assuntos
Envelhecimento/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ciclo Celular , Cromatina/metabolismo , Regulação Fúngica da Expressão Gênica , Histona-Lisina N-Metiltransferase/genética , Metilação , Proteínas Nucleares/genética , Nucleossomos , Processamento de Proteína Pós-Traducional , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética
6.
Proc Natl Acad Sci U S A ; 107(1): 64-8, 2010 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-20018668

RESUMO

The dynamic behavior of proteins is critical for cellular homeostasis. However, analyzing dynamics of proteins and protein complexes in vivo has been difficult. Here we describe recombination-induced tag exchange (RITE), a genetic method that induces a permanent epitope-tag switch in the coding sequence after a hormone-induced activation of Cre recombinase. The time-controlled tag switch provides a unique ability to detect and separate old and new proteins in time and space, which opens up opportunities to investigate the dynamic behavior of proteins. We validated the technology by determining exchange of endogenous histones in chromatin by biochemical methods and by visualizing and quantifying replacement of old by new proteasomes in single cells by microscopy. RITE is widely applicable and allows probing spatiotemporal changes in protein properties by multiple methods.


Assuntos
Epitopos/genética , Proteínas , Recombinação Genética/fisiologia , Cromatina/genética , Cromatina/metabolismo , Corantes Fluorescentes/metabolismo , Histonas/genética , Histonas/metabolismo , Integrases/genética , Integrases/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas/genética , Proteínas/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Reprodutibilidade dos Testes
7.
BMC Mol Biol ; 10: 76, 2009 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-19638198

RESUMO

BACKGROUND: Methylation of lysine 79 on histone H3 by Dot1 is required for maintenance of heterochromatin structure in yeast and humans. However, this histone modification occurs predominantly in euchromatin. Thus, Dot1 affects silencing by indirect mechanisms and does not act by the recruitment model commonly proposed for histone modifications. To better understand the role of H3K79 methylation gene silencing, we investigated the silencing function of Dot1 by genetic suppressor and enhancer analysis and examined the relationship between Dot1 and other global euchromatic histone modifiers. RESULT: We determined that loss of H3K79 methylation results in a partial silencing defect that could be bypassed by conditions that promote targeting of Sir proteins to heterochromatin. Furthermore, the silencing defect in strains lacking Dot1 was dependent on methylation of H3K4 by Set1 and histone acetylation by Gcn5, Elp3, and Sas2 in euchromatin. Our study shows that multiple histone modifications associated with euchromatin positively modulate the function of heterochromatin by distinct mechanisms. Genetic interactions between Set1 and Set2 suggested that the H3K36 methyltransferase Set2, unlike most other euchromatic modifiers, negatively affects gene silencing. CONCLUSION: Our genetic dissection of Dot1's role in silencing in budding yeast showed that heterochromatin formation is modulated by multiple euchromatic histone modifiers that act by non-overlapping mechanisms. We discuss how euchromatic histone modifiers can make negative as well as positive contributions to gene silencing by competing with heterochromatin proteins within heterochromatin, within euchromatin, and at the boundary between euchromatin and heterochromatin.


Assuntos
Heterocromatina , Histonas/metabolismo , Saccharomyces cerevisiae/genética , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Inativação Gênica , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fenótipo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/metabolismo , Sirtuína 2 , Sirtuínas/genética , Sirtuínas/metabolismo
8.
Elife ; 3: e01374, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24497542

RESUMO

To protect against aneuploidy, chromosomes must attach to microtubules from opposite poles ('biorientation') prior to their segregation during mitosis. Biorientation relies on the correction of erroneous attachments by the aurora B kinase, which destabilizes kinetochore-microtubule attachments that lack tension. Incorrect attachments are also avoided because sister kinetochores are intrinsically biased towards capture by microtubules from opposite poles. Here, we show that shugoshin acts as a pericentromeric adaptor that plays dual roles in biorientation in budding yeast. Shugoshin maintains the aurora B kinase at kinetochores that lack tension, thereby engaging the error correction machinery. Shugoshin also recruits the chromosome-organizing complex, condensin, to the pericentromere. Pericentromeric condensin biases sister kinetochores towards capture by microtubules from opposite poles. Our findings uncover the molecular basis of the bias to sister kinetochore capture and expose shugoshin as a pericentromeric hub controlling chromosome biorientation. DOI: http://dx.doi.org/10.7554/eLife.01374.001.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Ciclo Celular , Centrômero/metabolismo , Segregação de Cromossomos , Proteínas de Ligação a DNA/metabolismo , Complexos Multiproteicos/metabolismo , Saccharomycetales/fisiologia , Saccharomycetales/metabolismo
9.
G3 (Bethesda) ; 3(8): 1261-72, 2013 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-23708297

RESUMO

Proteins are not static entities. They are highly mobile, and their steady-state levels are achieved by a balance between ongoing synthesis and degradation. The dynamic properties of a protein can have important consequences for its function. For example, when a protein is degraded and replaced by a newly synthesized one, posttranslational modifications are lost and need to be reincorporated in the new molecules. Protein stability and mobility are also relevant for the duplication of macromolecular structures or organelles, which involves coordination of protein inheritance with the synthesis and assembly of newly synthesized proteins. To measure protein dynamics, we recently developed a genetic pulse-chase assay called recombination-induced tag exchange (RITE). RITE has been successfully used in Saccharomyces cerevisiae to measure turnover and inheritance of histone proteins, to study changes in posttranslational modifications on aging proteins, and to visualize the spatiotemporal inheritance of protein complexes and organelles in dividing cells. Here we describe a series of successful RITE cassettes that are designed for biochemical analyses, genomics studies, as well as single cell fluorescence applications. Importantly, the genetic nature and the stability of the tag switch offer the unique possibility to combine RITE with high-throughput screening for protein dynamics mutants and mechanisms. The RITE cassettes are widely applicable, modular by design, and can therefore be easily adapted for use in other cell types or organisms.


Assuntos
Histonas/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Imunoprecipitação da Cromatina , Técnicas de Introdução de Genes , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Histonas/metabolismo , Integrases/metabolismo , Recombinação Genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
10.
Epigenetics Chromatin ; 4(1): 2, 2011 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-21291527

RESUMO

BACKGROUND: Methylation of histone H3 lysine 79 (H3K79) by Dot1 is highly conserved among species and has been associated with both gene repression and activation. To eliminate indirect effects and examine the direct consequences of Dot1 binding and H3K79 methylation, we investigated the effects of targeting Dot1 to different positions in the yeast genome. RESULTS: Targeting Dot1 did not activate transcription at a euchromatic locus. However, chromatin-bound Dot1 derepressed heterochromatin-mediated gene silencing over a considerable distance. Unexpectedly, Dot1-mediated derepression was established by both a H3K79 methylation-dependent and a methylation-independent mechanism; the latter required the histone acetyltransferase Gcn5. By monitoring the localization of a fluorescently tagged telomere in living cells, we found that the targeting of Dot1, but not its methylation activity, led to the release of a telomere from the repressive environment at the nuclear periphery. This probably contributes to the activity-independent derepression effect of Dot1. CONCLUSIONS: Targeting of Dot1 promoted gene expression by antagonizing gene repression through both histone methylation and chromatin relocalization. Our findings show that binding of Dot1 to chromatin can positively affect local gene expression by chromatin rearrangements over a considerable distance.

11.
Mol Cell Biol ; 28(11): 3861-72, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18391024

RESUMO

Dot1 methylates histone H3 lysine 79 (H3K79) on the nucleosome core and is involved in Sir protein-mediated silencing. Previous studies suggested that H3K79 methylation within euchromatin prevents nonspecific binding of the Sir proteins, which in turn facilitates binding of the Sir proteins in unmethylated silent chromatin. However, the mechanism by which the Sir protein binding is influenced by this modification is unclear. We performed genome-wide synthetic genetic array (SGA) analysis and identified interactions of DOT1 with SIR1 and POL32. The synthetic growth defects found by SGA analysis were attributed to the loss of mating type identity caused by a synthetic silencing defect. By using epistasis analysis, DOT1, SIR1, and POL32 could be placed in different pathways of silencing. Dot1 shared its silencing phenotypes with the NatA N-terminal acetyltransferase complex and the conserved N-terminal bromo adjacent homology (BAH) domain of Sir3 (a substrate of NatA). We classified all of these as affecting a common silencing process, and we show that mutations in this process lead to nonspecific binding of Sir3 to chromatin. Our results suggest that the BAH domain of Sir3 binds to histone H3K79 and that acetylation of the BAH domain is required for the binding specificity of Sir3 for nucleosomes unmethylated at H3K79.


Assuntos
Regulação Fúngica da Expressão Gênica , Inativação Gênica , Genes Letais , Nucleossomos/metabolismo , Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/metabolismo , Acetilação , Cromatina/metabolismo , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Histona-Lisina N-Metiltransferase , Histonas/metabolismo , Metilação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/genética
12.
Blood ; 108(7): 2143-9, 2006 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-16788102

RESUMO

Cytokine secretion profiles of activated T cells are critical for maintaining the immunologic balance between protection and tolerance. In mice, several cytokines have been reported to exhibit monoallelic expression. Previously, we found that the human interleukin-1 alpha (IL1A) gene exhibits a stable allele-specific expression pattern in CD4+ T-cell clones. We investigated whether DNA methylation is involved in the allele-specific expression of IL-1alpha. Here, we show that differential methylation of CpGs in the proximal promoter region is associated with allele-specific expression of IL-1alpha in CD4+ T cells. The differential methylation pattern is already observed in naive T cells. In keratinocytes, which constitutively produce IL-1alpha, the proximal promoter is hypomethylated. CpGs located further upstream and in intron 4 were almost all methylated, irrespective of expression. Treatment of nonexpressing cells and of T-cell clones with 5-aza-2'deoxycytidine induced IL-1alpha expression in the nonexpressing cells and induced expression of the formerly silent allele in T-cell clones. In addition, electrophoretic mobility shift assays showed that methylation of CpGs in the proximal promoter resulted in direct inhibition of binding of nuclear factor(s). Taken together, these results suggest that allele-specific expression of IL-1alpha in CD4+ cells is achieved, at least in part, by differential methylation of the promoter.


Assuntos
Alelos , Linfócitos T CD4-Positivos/metabolismo , Regulação da Expressão Gênica , Interleucina-1/genética , Interleucina-1/metabolismo , Regiões Promotoras Genéticas , Animais , Azacitidina/análogos & derivados , Azacitidina/farmacologia , Ilhas de CpG , Metilação de DNA , Decitabina , Inibidores Enzimáticos/farmacologia , Humanos , Linfócitos/metabolismo , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA