Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Appl Clin Med Phys ; 22(6): 229-240, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33949087

RESUMO

PURPOSE: To investigate intrinsic sensitivity of an electronic portal imaging device (EPID) and the ArcCHECK detector and to use this in assessing their performance in detecting delivery variations for lung SBRT VMAT. The effect of detector spatial resolution and dose matrix interpolation on the gamma pass rate was also considered. MATERIALS AND METHODS: Fifteen patients' lung SBRT VMAT plans were used. Delivery variations (errors) were introduced by modifying collimator angles, multi-leaf collimator (MLC) field sizes and MLC field shifts by ±5, ±2, and ±1 degrees or mm (investigating 103 plans in total). EPID and ArcCHECK measured signals with introduced variations were compared to measured signals without variations (baseline), using OmniPro-I'mRT software and gamma criteria of 3%/3 mm, 2%/2 mm, 2%/1 mm, and 1%/1 mm, to test each system's basic performance. The measurement sampling resolution for each was also changed to 1 mm and results compared to those with the default detector system resolution. RESULTS: Intrinsic detector sensitivity analysis, that is, comparing measurement to baseline measurement, rather than measurement to plan, demonstrated the intrinsic constraints of each detector and indicated the limiting performance that users might expect. Changes in the gamma pass rates for ArcCHECK, for a given introduced error, were affected only by dose difference (DD %) criteria. However, the EPID showed only slight changes when changing DD%, but greater effects when changing distance-to-agreement criteria. This is pertinent for lung SBRT where the minimum dose to the target will drop dramatically with geometric errors. Detector resolution and dose matrix interpolation have an impact on the gamma results for these SBRT plans and can lead to false positives or negatives in error detection if not understood. CONCLUSION: The intrinsic sensitivity approach may help in the selection of more meaningful gamma criteria and the choice of optimal QA device for site-specific dose verification.


Assuntos
Radiocirurgia , Radioterapia de Intensidade Modulada , Humanos , Pulmão , Garantia da Qualidade dos Cuidados de Saúde , Radiometria , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
2.
Phys Med ; 86: 6-18, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34049118

RESUMO

PURPOSE: To evaluate the Integral Quality Monitor (IQM) as a clinical dosimetry device for detecting photon beam delivery errors in clinically relevant conditions. MATERIALS AND METHODS: The IQM's ability to detect delivery errors introduced into clinical VMAT plans for two different treatment sites was assessed. This included measuring 103 nasopharynx VMAT plans and 78 lung SBRT VMAT plans with introduced errors in gantry angle (1-5°) and in MLC-defined field size and field shift (1-5 mm). The IQM sensitivity was compared to ArcCheck detector performance. Signal dependence on field position for on-axis and asymmetrically offset square field sizes from 1 × 1 cm2 to 30 × 30 cm2 was also investigated. RESULTS: The IQM detected almost all introduced clinically-significant MLC field size errors, but not some small gantry angle errors or most MLC field shift errors. The IQM sensitivity was comparable to the ArcCheck for lung SBRT, but worse for the nasopharynx plans. Differences between IQM calculated/predicted and measured signals were within ± 2% for all on-axis square fields, but up to 60% for the smallest asymmetrically offset fields at large offsets. CONCLUSION: The IQM performance was consistent and reproducible. It showed highest sensitivity to the field size errors for these plans, but did not detect some clinically-significant introduced gantry angle errors or most MLC field shift errors. The IQM calculation model is still being developed, which should improve small offset-field performance. Care is required in IQM use for plan verification or online monitoring, especially for small fields that are off-axis in the detector gradient direction.


Assuntos
Radioterapia de Intensidade Modulada , Humanos , Garantia da Qualidade dos Cuidados de Saúde , Radiometria , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
3.
Artigo em Inglês | MEDLINE | ID: mdl-33251344

RESUMO

INTRODUCTION: While there is evidence to show the positive effects of automation, the impact on radiation oncology professionals has been poorly considered. This study examined radiation oncology professionals' perceptions of automation in radiotherapy planning. METHOD: An online survey link was sent to the chief radiation therapists (RT) of all Australian radiotherapy centres to be forwarded to RTs, medical physicists (MP) and radiation oncologists (RO) within their institution. The survey was open from May-July 2019. RESULTS: Participants were 204 RTs, 84 MPs and 37 ROs (response rates ∼10% of the overall radiation oncology workforce). Respondents felt automation resulted in improvement in consistency in planning (90%), productivity (88%), quality of planning (57%), and staff focus on patient care (49%). When asked about perceived impact of automation, the responses were; will change the primary tasks of certain jobs (66%), will allow staff to do the remaining components of their job more effectively (51%), will eliminate jobs (20%), and will not have an impact on jobs (6%). 27% of respondents believe automation will reduce job satisfaction. 71% of respondents strongly agree/agree that automation will cause a loss of skills, while only 25% strongly agree/agree that the training and education tools in their department are sufficient. CONCLUSION: Although the effect of automation is perceived positively, there are some concerns on loss of skillsets and the lack of training to maintain this. These results highlight the need for continued education to ensure that skills and knowledge are not lost with automation.

4.
Phys Med ; 59: 37-46, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30928064

RESUMO

PURPOSE: To study the sensitivity of an Electronic Portal Imaging Device (EPID) in detecting delivery errors for VMAT lung stereotactic body radiotherapy (SBRT) using the Collapsed Arc method. METHODS: Baseline VMAT plans and plans with errors intentionally introduced were generated for 15 lung SBRT patients. Three types of errors were introduced by modifying collimator angles and multi-leaf collimator (MLC) field sizes (MLCFS) and MLC shifts by ±5, ±2, and ±1° or millimeters. A total of 103 plans were measured with EPID on an Elekta Synergy Linear Accelerator (Agility MLC) and compared to both the original treatment planning system (TPS) Collapsed Arc dose matrix and the no-error plan baseline EPID measurements. Gamma analysis was performed using the OmniPro-I'mRT (IBA Dosimetry) software and gamma criteria of 1%/1 mm, 2%/1 mm, 2%/2 mm, and 3%/3. RESULTS: When the error-introduced EPID measured dose matrices were compared to the TPS matrices, the majority of simulated errors were detected with gamma tolerance of 2%/1 mm and 1%/1 mm. When the error-introduced EPID measured dose matrices were compared to the baseline EPID measurements, all the MLCFS and MLC shift errors, and ±5°collimator errors were detected using 2%/1 mm and 1%/1 mm gamma criteria. CONCLUSION: This work demonstrates the feasibility and effectiveness of the collapsed arc technique and EPID for pre-treatment verification of lung SBRT VMAT plans. The EPID was able to detect the majority of MLC and the larger collimator errors with sensitivity to errors depending on the gamma tolerances.


Assuntos
Equipamentos e Provisões Elétricas , Neoplasias Pulmonares/diagnóstico por imagem , Planejamento da Radioterapia Assistida por Computador , Erros de Configuração em Radioterapia , Radioterapia de Intensidade Modulada/instrumentação , Humanos , Aceleradores de Partículas , Dosagem Radioterapêutica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA