Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Physiol ; 599(9): 2435-2451, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-31696938

RESUMO

KEY POINTS: Two groups of inexperienced brain-computer interface users underwent a purely mental EEG-BCI session that rapidly impacted on their brain. Modulations in structural and functional MRI were found after only 1 h of BCI training. Two different types of BCI (based on motor imagery or visually evoked potentials) were employed and analyses showed that the brain plastic changes are spatially specific for the respective neurofeedback. This spatial specificity promises tailored therapeutic interventions (e.g. for stroke patients). ABSTRACT: A brain-computer-interface (BCI) allows humans to control computational devices using only neural signals. However, it is still an open question, whether performing BCI also impacts on the brain itself, i.e. whether brain plasticity is induced. Here, we show rapid and spatially specific signs of brain plasticity measured with functional and structural MRI after only 1 h of purely mental BCI training in BCI-naive subjects. We employed two BCI approaches with neurofeedback based on (i) modulations of EEG rhythms by motor imagery (MI-BCI) or (ii) event-related potentials elicited by visually targeting flashing letters (ERP-BCI). Before and after the BCI session we performed structural and functional MRI. For both BCI approaches we found increased T1-weighted MR signal in the grey matter of the respective target brain regions, such as occipital/parietal areas after ERP-BCI and precuneus and sensorimotor regions after MI-BCI. The latter also showed increased functional connectivity and higher task-evoked BOLD activity in the same areas. Our results demonstrate for the first time that BCI by means of targeted neurofeedback rapidly impacts on MRI measures of brain structure and function. The spatial specificity of BCI-induced brain plasticity promises therapeutic interventions tailored to individual functional deficits, for example in patients after stroke.


Assuntos
Interfaces Cérebro-Computador , Neurorretroalimentação , Encéfalo/diagnóstico por imagem , Eletroencefalografia , Humanos , Imaginação , Plasticidade Neuronal
2.
J Neurophysiol ; 124(4): 1045-1055, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32816612

RESUMO

Coordination of functionally coupled muscles is a key aspect of movement execution. Demands on coordinative control increase with the number of involved muscles and joints, as well as with differing movement periods within a given motor sequence. While previous research has provided evidence concerning inter- and intramuscular synchrony in isolated movements, compound movements remain largely unexplored. With this study, we aimed to uncover neural mechanisms of bilateral coordination through intermuscular coherence (IMC) analyses between principal homologous muscles during bipedal squatting (BpS) at multiple frequency bands (alpha, beta, and gamma). For this purpose, participants performed bipedal squats without additional load, which were divided into three distinct movement periods (eccentric, isometric, and concentric). Surface electromyography (EMG) was recorded from four homologous muscle pairs representing prime movers during bipedal squatting. We provide novel evidence that IMC magnitudes differ between movement periods in beta and gamma bands, as well as between homologous muscle pairs across all frequency bands. IMC was greater in the muscle pairs involved in postural and bipedal stability compared with those involved in muscular force during BpS. Furthermore, beta and gamma IMC magnitudes were highest during eccentric movement periods, whereas we did not find movement-related modulations for alpha IMC magnitudes. This finding thus indicates increased integration of afferent information during eccentric movement periods. Collectively, our results shed light on intermuscular synchronization during bipedal squatting, as we provide evidence that central nervous processing of bilateral intermuscular functioning is achieved through task-dependent modulations of common neural input to homologous muscles.NEW & NOTEWORTHY It is largely unexplored how the central nervous system achieves coordination of homologous muscles of the upper and lower body within a compound whole body movement, and to what extent this neural drive is modulated between different movement periods and muscles. Using intermuscular coherence analysis, we show that homologous muscle functions are mediated through common oscillatory input that extends over alpha, beta, and gamma frequencies with different synchronization patterns at different movement periods.


Assuntos
Exercício Físico/fisiologia , Músculo Esquelético/fisiologia , Adulto , Lateralidade Funcional , Humanos , Perna (Membro)/fisiologia , Masculino , Contração Muscular , Músculo Esquelético/inervação , Equilíbrio Postural
3.
Neural Comput ; 26(2): 349-76, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24206388

RESUMO

Electroencephalographic signals are known to be nonstationary and easily affected by artifacts; therefore, their analysis requires methods that can deal with noise. In this work, we present a way to robustify the popular common spatial patterns (CSP) algorithm under a maxmin approach. In contrast to standard CSP that maximizes the variance ratio between two conditions based on a single estimate of the class covariance matrices, we propose to robustly compute spatial filters by maximizing the minimum variance ratio within a prefixed set of covariance matrices called the tolerance set. We show that this kind of maxmin optimization makes CSP robust to outliers and reduces its tendency to overfit. We also present a data-driven approach to construct a tolerance set that captures the variability of the covariance matrices over time and shows its ability to reduce the nonstationarity of the extracted features and significantly improve classification accuracy. We test the spatial filters derived with this approach and compare them to standard CSP and a state-of-the-art method on a real-world brain-computer interface (BCI) data set in which we expect substantial fluctuations caused by environmental differences. Finally we investigate the advantages and limitations of the maxmin approach with simulations.


Assuntos
Interfaces Cérebro-Computador/normas , Eletroencefalografia/normas , Modelos Neurológicos , Eletroencefalografia/métodos , Humanos
4.
J Neural Eng ; 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39265614

RESUMO

OBJECTIVE: Serving as a channel for communication with locked-in patients or control of prostheses, sensorimotor brain-computer interfaces (BCIs) decode imaginary movements from the recorded activity of the user's brain. However, many individuals remain unable to control the BCI, and the underlying mechanisms are unclear. The user's BCI performance was previously shown to correlate with the resting-state signal-to-noise ratio (SNR) of the mu rhythm and the phase synchronization (PS) of the mu rhythm between sensorimotor areas. Yet, these predictors of performance were primarily evaluated in a single BCI session, while the longitudinal aspect remains rather uninvestigated. In addition, different analysis pipelines were used to estimate PS in source space, potentially hindering the reproducibility of the results. APPROACH: To systematically address these issues, we performed an extensive validation of the relationship between pre-stimulus SNR, PS, and session-wise BCI performance using a publicly available dataset of 62 human participants performing up to 11 sessions of BCI training. We performed the analysis in sensor space using the surface Laplacian and in source space by combining 24 processing pipelines in a multiverse analysis. This way, we could investigate how robust the observed effects were to the selection of the pipeline. MAIN RESULTS: Our results show that SNR had both between- and within-subject effects on BCI performance for the majority of the pipelines. In contrast, the effect of PS on BCI performance was less robust to the selection of the pipeline and became non-significant after controlling for SNR. SIGNIFICANCE: Taken together, our results demonstrate that changes in neuronal connectivity within the sensorimotor system are not critical for learning to control a BCI, and interventions that increase the SNR of the mu rhythm might lead to improvements in the user's BCI performance.

5.
J Neuroeng Rehabil ; 10: 66, 2013 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-23822118

RESUMO

BACKGROUND: MUNDUS is an assistive framework for recovering direct interaction capability of severely motor impaired people based on arm reaching and hand functions. It aims at achieving personalization, modularity and maximization of the user's direct involvement in assistive systems. To this, MUNDUS exploits any residual control of the end-user and can be adapted to the level of severity or to the progression of the disease allowing the user to voluntarily interact with the environment. MUNDUS target pathologies are high-level spinal cord injury (SCI) and neurodegenerative and genetic neuromuscular diseases, such as amyotrophic lateral sclerosis, Friedreich ataxia, and multiple sclerosis (MS). The system can be alternatively driven by residual voluntary muscular activation, head/eye motion, and brain signals. MUNDUS modularly combines an antigravity lightweight and non-cumbersome exoskeleton, closed-loop controlled Neuromuscular Electrical Stimulation for arm and hand motion, and potentially a motorized hand orthosis, for grasping interactive objects. METHODS: The definition of the requirements and of the interaction tasks were designed by a focus group with experts and a questionnaire with 36 potential end-users. RESULTS: The functionality of all modules has been successfully demonstrated. User's intention was detected with a 100% success. Averaging all subjects and tasks, the minimum evaluation score obtained was 1.13 ± 0.99 for the release of the handle during the drinking task, whilst all the other sub-actions achieved a mean value above 1.6. All users, but one, subjectively perceived the usefulness of the assistance and could easily control the system. Donning time ranged from 6 to 65 minutes, scaled on the configuration complexity. CONCLUSIONS: The MUNDUS platform provides functional assistance to daily life activities; the modules integration depends on the user's need, the functionality of the system have been demonstrated for all the possible configurations, and preliminary assessment of usability and acceptance is promising.


Assuntos
Próteses Neurais , Desenho de Prótese , Extremidade Superior/fisiologia , Adulto , Idoso , Braço/fisiologia , Interfaces Cérebro-Computador , Feminino , Mãos/fisiologia , Força da Mão/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Doenças Neuromusculares/reabilitação , Desempenho Psicomotor/fisiologia , Traumatismos da Medula Espinal/reabilitação , Resultado do Tratamento
6.
Neural Comput Appl ; 35(8): 5737-5749, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36212215

RESUMO

Anxiety affects approximately 5-10% of the adult population worldwide, placing a large burden on the health systems. Despite its omnipresence and impact on mental and physical health, most of the individuals affected by anxiety do not receive appropriate treatment. Current research in the field of psychiatry emphasizes the need to identify and validate biological markers relevant to this condition. Neurophysiological preclinical studies are a prominent approach to determine brain rhythms that can be reliable markers of key features of anxiety. However, while neuroimaging research consistently implicated prefrontal cortex and subcortical structures, such as amygdala and hippocampus, in anxiety, there is still a lack of consensus on the underlying neurophysiological processes contributing to this condition. Methods allowing non-invasive recording and assessment of cortical processing may provide an opportunity to help identify anxiety signatures that could be used as intervention targets. In this study, we apply Source-Power Comodulation (SPoC) to electroencephalography (EEG) recordings in a sample of participants with different levels of trait anxiety. SPoC was developed to find spatial filters and patterns whose power comodulates with an external variable in individual participants. The obtained patterns can be interpreted neurophysiologically. Here, we extend the use of SPoC to a multi-subject setting and test its validity using simulated data with a realistic head model. Next, we apply our SPoC framework to resting state EEG of 43 human participants for whom trait anxiety scores were available. SPoC inter-subject analysis of narrow frequency band data reveals neurophysiologically meaningful spatial patterns in the theta band (4-7 Hz) that are negatively correlated with anxiety. The outcome is specific to the theta band and not observed in the alpha (8-12 Hz) or beta (13-30 Hz) frequency range. The theta-band spatial pattern is primarily localised to the superior frontal gyrus. We discuss the relevance of our spatial pattern results for the search of biomarkers for anxiety and their application in neurofeedback studies.

7.
Artigo em Inglês | MEDLINE | ID: mdl-38051627

RESUMO

Predicting whether a particular individual would reach an adequate control of a Brain-Computer Interface (BCI) has many practical advantages. On the one hand, participants with low predicted performance could be trained with specifically designed sessions and avoid frustrating experiments; on the other hand, planning time and resources would be more efficient; and finally, the variables related to an accurate prediction could be manipulated to improve the prospective BCI performance. To this end, several predictors have been proposed in the literature, most of them based on the power estimation of EEG signals at the specific frequency bands. Many of these studies evaluate their predictors in relatively small datasets and/or using a relatively high number of channels. In this manuscript, we propose a novel predictor called [Formula: see text] to predict the performance of participants using BCIs that are based on the modulation of sensorimotor rhythms. This novel predictor has been positively evaluated using only 2, 3, 4 or 5 channels. [Formula: see text] has shown to perform as well as or better than other state-of-the-art predictors. The best sets of different number of channels are also provided, which have been tested in two different settings to prove their robustness. The proposed predictor has been successfully evaluated using two large-scale datasets containing 150 and 80 participants, respectively. We also discuss predictor thresholds for users to expect good performance in feedback experiments and show the advantages in comparison to a competing algorithm.


Assuntos
Interfaces Cérebro-Computador , Humanos , Eletroencefalografia , Estudos Prospectivos , Retroalimentação , Algoritmos
8.
Front Syst Neurosci ; 17: 1045396, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37025164

RESUMO

Introduction: Like alpha rhythm, the somatosensory mu rhythm is suppressed in the presence of somatosensory inputs by implying cortical excitation. Sensorimotor rhythm (SMR) can be classified into two oscillatory frequency components: mu rhythm (8-13 Hz) and beta rhythm (14-25 Hz). The suppressed/enhanced SMR is a neural correlate of cortical activation related to efferent and afferent movement information. Therefore, it would be necessary to understand cortical information processing in diverse movement situations for clinical applications. Methods: In this work, the EEG of 10 healthy volunteers was recorded while fingers were moved passively under different kinetic and kinematic conditions for proprioceptive stimulation. For the kinetics aspect, afferent brain activity (no simultaneous volition) was compared under two conditions of finger extension: (1) generated by an orthosis and (2) generated by the orthosis simultaneously combined and assisted with functional electrical stimulation (FES) applied at the forearm muscles related to finger extension. For the kinematic aspect, the finger extension was divided into two phases: (1) dynamic extension and (2) static extension (holding the extended position). Results: In the kinematic aspect, both mu and beta rhythms were more suppressed during a dynamic than a static condition. However, only the mu rhythm showed a significant difference between kinetic conditions (with and without FES) affected by attention to proprioception after transitioning from dynamic to static state, but the beta rhythm was not. Discussion: Our results indicate that mu rhythm was influenced considerably by muscle kinetics during finger movement produced by external devices, which has relevant implications for the design of neuromodulation and neurorehabilitation interventions.

9.
Front Hum Neurosci ; 17: 1070404, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37789905

RESUMO

More than 85% of stroke survivors suffer from different degrees of disability for the rest of their lives. They will require support that can vary from occasional to full time assistance. These conditions are also associated to an enormous economic impact for their families and health care systems. Current rehabilitation treatments have limited efficacy and their long-term effect is controversial. Here we review different challenges related to the design and development of neural interfaces for rehabilitative purposes. We analyze current bibliographic evidence of the effect of neuro-feedback in functional motor rehabilitation of stroke patients. We highlight the potential of these systems to reconnect brain and muscles. We also describe all aspects that should be taken into account to restore motor control. Our aim with this work is to help researchers designing interfaces that demonstrate and validate neuromodulation strategies to enforce a contingent and functional neural linkage between the central and the peripheral nervous system. We thus give clues to design systems that can improve or/and re-activate neuroplastic mechanisms and open a new recovery window for stroke patients.

10.
Neural Comput ; 23(3): 791-816, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21162666

RESUMO

Brain-computer interfaces (BCIs) allow users to control a computer application by brain activity as acquired (e.g., by EEG). In our classic machine learning approach to BCIs, the participants undertake a calibration measurement without feedback to acquire data to train the BCI system. After the training, the user can control a BCI and improve the operation through some type of feedback. However, not all BCI users are able to perform sufficiently well during feedback operation. In fact, a nonnegligible portion of participants (estimated 15%-30%) cannot control the system (a BCI illiteracy problem, generic to all motor-imagery-based BCIs). We hypothesize that one main difficulty for a BCI user is the transition from offline calibration to online feedback. In this work, we investigate adaptive machine learning methods to eliminate offline calibration and analyze the performance of 11 volunteers in a BCI based on the modulation of sensorimotor rhythms. We present an adaptation scheme that individually guides the user. It starts with a subject-independent classifier that evolves to a subject-optimized state-of-the-art classifier within one session while the user interacts continuously. These initial runs use supervised techniques for robust coadaptive learning of user and machine. Subsequent runs use unsupervised adaptation to track the features' drift during the session and provide an unbiased measure of BCI performance. Using this approach, without any offline calibration, six users, including one novice, obtained good performance after 3 to 6 minutes of adaptation. More important, this novel guided learning also allows participants with BCI illiteracy to gain significant control with the BCI in less than 60 minutes. In addition, one volunteer without sensorimotor idle rhythm peak at the beginning of the BCI experiment developed it during the course of the session and used voluntary modulation of its amplitude to control the feedback application.


Assuntos
Inteligência Artificial , Interfaces Cérebro-Computador , Calibragem , Adaptação Fisiológica , Adaptação Psicológica , Algoritmos , Encéfalo/fisiologia , Eletroencefalografia/métodos , Retroalimentação Psicológica , Humanos , Plasticidade Neuronal
11.
Brain Topogr ; 23(2): 194-8, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19946737

RESUMO

Brain-Computer Interfaces (BCIs) allow a user to control a computer application by brain activity as acquired, e.g., by EEG. One of the biggest challenges in BCI research is to understand and solve the problem of "BCI Illiteracy", which is that BCI control does not work for a non-negligible portion of users (estimated 15 to 30%). Here, we investigate the illiteracy problem in BCI systems which are based on the modulation of sensorimotor rhythms. In this paper, a sophisticated adaptation scheme is presented which guides the user from an initial subject-independent classifier that operates on simple features to a subject-optimized state-of-the-art classifier within one session while the user interacts the whole time with the same feedback application. While initial runs use supervised adaptation methods for robust co-adaptive learning of user and machine, final runs use unsupervised adaptation and therefore provide an unbiased measure of BCI performance. Using this approach, which does not involve any offline calibration measurement, good performance was obtained by good BCI participants (also one novice) after 3-6 min of adaptation. More importantly, the use of machine learning techniques allowed users who were unable to achieve successful feedback before to gain significant control over the BCI system. In particular, one participant had no peak of the sensory motor idle rhythm in the beginning of the experiment, but could develop such peak during the course of the session (and use voluntary modulation of its amplitude to control the feedback application).


Assuntos
Encéfalo/fisiologia , Eletroencefalografia/métodos , Retroalimentação Psicológica , Interface Usuário-Computador , Algoritmos , Inteligência Artificial , Humanos , Imaginação/fisiologia , Aprendizagem/fisiologia , Atividade Motora/fisiologia , Processamento de Sinais Assistido por Computador , Fatores de Tempo
12.
Front Neurosci ; 14: 575081, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33390877

RESUMO

Brain-Computer Interfaces (BCIs) are systems that allow users to control devices using brain activity alone. However, the ability of participants to command BCIs varies from subject to subject. About 20% of potential users of sensorimotor BCIs do not gain reliable control of the system. The inefficiency to decode user's intentions requires the identification of neurophysiological factors determining "good" and "poor" BCI performers. One of the important neurophysiological aspects in BCI research is that the neuronal oscillations, used to control these systems, show a rich repertoire of spatial sensorimotor interactions. Considering this, we hypothesized that neuronal connectivity in sensorimotor areas would define BCI performance. Analyses for this study were performed on a large dataset of 80 inexperienced participants. They took part in a calibration and an online feedback session recorded on the same day. Undirected functional connectivity was computed over sensorimotor areas by means of the imaginary part of coherency. The results show that post- as well as pre-stimulus connectivity in the calibration recording is significantly correlated to online feedback performance in µ and feedback frequency bands. Importantly, the significance of the correlation between connectivity and BCI feedback accuracy was not due to the signal-to-noise ratio of the oscillations in the corresponding post and pre-stimulus intervals. Thus, this study demonstrates that BCI performance is not only dependent on the amplitude of sensorimotor oscillations as shown previously, but that it also relates to sensorimotor connectivity measured during the preceding training session. The presence of such connectivity between motor and somatosensory systems is likely to facilitate motor imagery, which in turn is associated with the generation of a more pronounced modulation of sensorimotor oscillations (manifested in ERD/ERS) required for the adequate BCI performance. We also discuss strategies for the up-regulation of such connectivity in order to enhance BCI performance.

13.
Sci Rep ; 10(1): 5021, 2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-32193492

RESUMO

While much is known about motor control during simple movements, corticomuscular communication profiles during compound movement control remain largely unexplored. Here, we aimed at examining frequency band related interactions between brain and muscles during different movement periods of a bipedal squat (BpS) task utilizing regression corticomuscular coherence (rCMC), as well as partial directed coherence (PDC) analyses. Participants performed 40 squats, divided into three successive movement periods (Eccentric (ECC), Isometric (ISO) and Concentric (CON)) in a standardized manner. EEG was recorded from 32 channels specifically-tailored to cover bilateral sensorimotor areas while bilateral EMG was recorded from four main muscles of BpS. We found both significant CMC and PDC (in beta and gamma bands) during BpS execution, where CMC was significantly elevated during ECC and CON when compared to ISO. Further, the dominant direction of information flow (DIF) was most prominent in EEG-EMG direction for CON and EMG-EEG direction for ECC. Collectively, we provide novel evidence that motor control during BpS is potentially achieved through central motor commands driven by a combination of directed inputs spanning across multiple frequency bands. These results serve as an important step toward a better understanding of brain-muscle relationships during multi joint compound movements.


Assuntos
Articulações/fisiologia , Córtex Motor/fisiologia , Movimento/fisiologia , Músculo Esquelético/fisiologia , Adulto , Eletroencefalografia , Eletromiografia , Humanos , Contração Isométrica/fisiologia , Masculino , Córtex Sensório-Motor , Adulto Jovem
14.
PLoS One ; 14(1): e0207351, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30682025

RESUMO

Brain-Computer Interfaces (BCIs) are inefficient for a non-negligible part of the population, estimated around 25%. To understand this phenomenon in Sensorimotor Rhythm (SMR) based BCIs, data from a large-scale screening study conducted on 80 novice participants with the Berlin BCI system and its standard machine-learning approach were investigated. Each participant performed one BCI session with resting state Encephalography, Motor Observation, Motor Execution and Motor Imagery recordings and 128 electrodes. A significant portion of the participants (40%) could not achieve BCI control (feedback performance > 70%). Based on the performance of the calibration and feedback runs, BCI users were stratified in three groups. Analyses directed to detect and elucidate the differences in the SMR activity of these groups were performed. Statistics on reactive frequencies, task prevalence and classification results are reported. Based on their SMR activity, also a systematic list of potential reasons leading to performance drops and thus hints for possible improvements of BCI experimental design are given. The categorization of BCI users has several advantages, allowing researchers 1) to select subjects for further analyses as well as for testing new BCI paradigms or algorithms, 2) to adopt a better subject-dependent training strategy and 3) easier comparisons between different studies.


Assuntos
Interfaces Cérebro-Computador , Córtex Sensório-Motor/fisiologia , Adolescente , Adulto , Idoso , Biorretroalimentação Psicológica , Calibragem , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
15.
Med Biol Eng Comput ; 45(1): 61-8, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17139517

RESUMO

We present a study of linear, quadratic and regularized discriminant analysis (RDA) applied to motor imagery data of three subjects. The aim of the work was to find out which classifier can separate better these two-class motor imagery data: linear, quadratic or some function in between the linear and quadratic solutions. Discriminant analysis methods were tested with two different feature extraction techniques, adaptive autoregressive parameters and logarithmic band power estimates, which are commonly used in brain-computer interface research. Differences in classification accuracy of the classifiers were found when using different amounts of data; if a small amount was available, the best classifier was linear discriminant analysis (LDA) and if enough data were available all three classifiers performed very similar. This suggests that the effort needed to find regularizing parameters for RDA can be avoided by using LDA.


Assuntos
Análise Discriminante , Imaginação , Interface Usuário-Computador , Encéfalo/fisiologia , Humanos , Movimento
16.
J Neural Eng ; 14(3): 036005, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28224972

RESUMO

OBJECTIVE: We present the first generic theoretical formulation of the co-adaptive learning problem and give a simple example of two interacting linear learning systems, a human and a machine. APPROACH: After the description of the training protocol of the two learning systems, we define a simple linear model where the two learning agents are coupled by a joint loss function. The simplicity of the model allows us to find learning rules for both human and machine that permit computing theoretical simulations. MAIN RESULTS: As seen in simulations, an astonishingly rich structure is found for this eco-system of learners. While the co-adaptive learners are shown to easily stall or get out of sync for some parameter settings, we can find a broad sweet spot of parameters where the learning system can converge quickly. It is defined by mid-range learning rates on the side of the learning machine, quite independent of the human in the loop. Despite its simplistic assumptions the theoretical study could be confirmed by a real-world experimental study where human and machine co-adapt to perform cursor control under distortion. Also in this practical setting the mid-range learning rates yield the best performance and behavioral ratings. SIGNIFICANCE: The results presented in this mathematical study allow the computation of simple theoretical simulations and performance of real experimental paradigms. Additionally, they are nicely in line with previous results in the BCI literature.


Assuntos
Teoria dos Jogos , Aprendizagem/fisiologia , Modelos Lineares , Aprendizado de Máquina , Sistemas Homem-Máquina , Modelos Neurológicos , Animais , Simulação por Computador , Humanos
17.
J Neural Eng ; 13(4): 046003, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27187530

RESUMO

OBJECTIVE: In electroencephalographic (EEG) data, signals from distinct sources within the brain are widely spread by volume conduction and superimposed such that sensors receive mixtures of a multitude of signals. This reduction of spatial information strongly hampers single-trial analysis of EEG data as, for example, required for brain-computer interfacing (BCI) when using features from spontaneous brain rhythms. Spatial filtering techniques are therefore greatly needed to extract meaningful information from EEG. Our goal is to show, in online operation, that common spatial pattern patches (CSPP) are valuable to counteract this problem. APPROACH: Even though the effect of spatial mixing can be encountered by spatial filters, there is a trade-off between performance and the requirement of calibration data. Laplacian derivations do not require calibration data at all, but their performance for single-trial classification is limited. Conversely, data-driven spatial filters, such as common spatial patterns (CSP), can lead to highly distinctive features; however they require a considerable amount of training data. Recently, we showed in an offline analysis that CSPP can establish a valuable compromise. In this paper, we confirm these results in an online BCI study. In order to demonstrate the paramount feature that CSPP requires little training data, we used them in an adaptive setting with 20 participants and focused on users who did not have success with previous BCI approaches. MAIN RESULTS: The results of the study show that CSPP adapts faster and thereby allows users to achieve better feedback within a shorter time than previous approaches performed with Laplacian derivations and CSP filters. The success of the experiment highlights that CSPP has the potential to further reduce BCI inefficiency. SIGNIFICANCE: CSPP are a valuable compromise between CSP and Laplacian filters. They allow users to attain better feedback within a shorter time and thus reduce BCI inefficiency to one-fourth in comparison to previous non-adaptive paradigms.


Assuntos
Algoritmos , Interfaces Cérebro-Computador , Ondas Encefálicas , Calibragem , Eletroencefalografia/estatística & dados numéricos , Humanos , Imaginação/fisiologia , Aprendizado de Máquina , Movimento/fisiologia
18.
Med Eng Phys ; 38(11): 1195-1204, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27425203

RESUMO

Assistive technologies help patients to reacquire interacting capabilities with the environment and improve their quality of life. In this manuscript we present a feasibility study in which healthy users were able to use a non-invasive Motor Imagery (MI)-based brain computer interface (BCI) to achieve linear control of an upper-limb functional electrical stimulation (FES) controlled neuro-prosthesis. The linear control allowed the real-time computation of a continuous control signal that was used by the FES system to physically set the stimulation parameters to control the upper-limb position. Even if the nature of the task makes the operation very challenging, the participants achieved a mean selection accuracy of 82.5% in a target selection experiment. An analysis of limb kinematics as well as the positioning precision was performed, showing the viability of using a BCI-FES system to control upper-limb reaching movements. The results of this study constitute an accurate use of an online non-invasive BCI to operate a FES-neuroprosthesis setting a step toward the recovery of the control of an impaired limb with the sole use of brain activity.


Assuntos
Interfaces Cérebro-Computador , Eletroencefalografia , Próteses Neurais , Extremidade Superior , Calibragem , Estimulação Elétrica , Retroalimentação Fisiológica , Humanos , Modelos Lineares
19.
PLoS One ; 11(2): e0148886, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26891350

RESUMO

In the last years Brain Computer Interface (BCI) technology has benefited from the development of sophisticated machine leaning methods that let the user operate the BCI after a few trials of calibration. One remarkable example is the recent development of co-adaptive techniques that proved to extend the use of BCIs also to people not able to achieve successful control with the standard BCI procedure. Especially for BCIs based on the modulation of the Sensorimotor Rhythm (SMR) these improvements are essential, since a not negligible percentage of users is unable to operate SMR-BCIs efficiently. In this study we evaluated for the first time a fully automatic co-adaptive BCI system on a large scale. A pool of 168 participants naive to BCIs operated the co-adaptive SMR-BCI in one single session. Different psychological interventions were performed prior the BCI session in order to investigate how motor coordination training and relaxation could influence BCI performance. A neurophysiological indicator based on the Power Spectral Density (PSD) was extracted by the recording of few minutes of resting state brain activity and tested as predictor of BCI performances. Results show that high accuracies in operating the BCI could be reached by the majority of the participants before the end of the session. BCI performances could be significantly predicted by the neurophysiological indicator, consolidating the validity of the model previously developed. Anyway, we still found about 22% of users with performance significantly lower than the threshold of efficient BCI control at the end of the session. Being the inter-subject variability still the major problem of BCI technology, we pointed out crucial issues for those who did not achieve sufficient control. Finally, we propose valid developments to move a step forward to the applicability of the promising co-adaptive methods.


Assuntos
Interfaces Cérebro-Computador , Adolescente , Adulto , Biorretroalimentação Psicológica , Eletroencefalografia , Feminino , Humanos , Masculino , Reprodutibilidade dos Testes , Adulto Jovem
20.
J Neural Eng ; 11(3): 035007, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24835132

RESUMO

OBJECTIVE: In recent years, brain-computer interfaces (BCIs) have become mature enough to immensely benefit from the expertise and tools established in the field of human-computer interaction (HCI). One of the core objectives in HCI research is the design of systems that provide a pleasurable user experience (UX). While the majority of BCI studies exclusively evaluate common efficiency measures such as classification accuracy and speed, single research groups have begun to look at further usability aspects such as ease of use, workload and learnability. However, these evaluation metrics only cover pragmatic aspects of UX while still not considering the hedonic quality of UX. In order to gain a holistic perspective on UX, hedonic quality aspects such as motivation and frustration were also taken into account for our evaluation of three BCI-driven interfaces, which were proposed to be used as a two-stage neuroprosthetic control within the EU project MUNDUS. APPROACH: At the first stage, one of six possible actions was selected and either confirmed or cancelled at the second stage. For the experiment, a solely event-related-potential-based interface (ERP-ERP) and two hybrid solutions were tested that were controlled by ERP and motor imagery (MI)--resulting in the two possible combinations: ERP selection/MI confirmation (ERP-MI) or MI selection/ERP confirmation (MI-ERP). Behavioural, subjective and encephalographic (EEG) data of 12 healthy subjects were collected during an online experiment with the three graphical user interfaces (GUIs). MAIN RESULTS: Results showed a significantly greater pragmatic quality (in terms of accuracy, efficiency, workload, use quality and learnability) for the ERP-ERP and ERP-MI GUIs in contrast to the MI-ERP GUI. Consequently, the MI-ERP GUI is least suited for use as a neuroprosthetic control. With respect to the comparison of the ERP-ERP and ERP-MI GUIs, no significant differences in pragmatic and hedonic quality of UX were found. Since throughout better results were obtained for the conventional approach and it was most preferred by the subjects, the ERP-ERP GUI seems more suitable for its deployment in actual end-users. Nevertheless, for individuals with stable MI patterns, the hybrid interface can be provided as an additional option of choice within the MUNDUS framework. SIGNIFICANCE: Although the paramount goal in BCI research still remains the improvement of classification accuracy and communication speed, it is of significance to note that it is equally important for end-users to keep up their motivation and prevent frustration. By including pragmatic as well as hedonic quality aspects, this study is the first effort to gain a holistic perspective of the UX while interacting with BCI-driven assistive technology aimed at actual end-users. The broad-scale methodology provided valuable insights into the underlying dynamics causing the users' experience to differ across the GUIs. The results will be used to refine a BCI-driven neuroprosthesis and test it with end-users.


Assuntos
Interfaces Cérebro-Computador/psicologia , Ergonomia/métodos , Sistemas Homem-Máquina , Participação do Paciente/métodos , Participação do Paciente/psicologia , Satisfação do Paciente , Interface Usuário-Computador , Adulto , Algoritmos , Feminino , Saúde Holística , Humanos , Masculino , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA