Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Nature ; 619(7968): 160-166, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37258666

RESUMO

KRAS is one of the most commonly mutated proteins in cancer, and efforts to directly inhibit its function have been continuing for decades. The most successful of these has been the development of covalent allele-specific inhibitors that trap KRAS G12C in its inactive conformation and suppress tumour growth in patients1-7. Whether inactive-state selective inhibition can be used to therapeutically target non-G12C KRAS mutants remains under investigation. Here we report the discovery and characterization of a non-covalent inhibitor that binds preferentially and with high affinity to the inactive state of KRAS while sparing NRAS and HRAS. Although limited to only a few amino acids, the evolutionary divergence in the GTPase domain of RAS isoforms was sufficient to impart orthosteric and allosteric constraints for KRAS selectivity. The inhibitor blocked nucleotide exchange to prevent the activation of wild-type KRAS and a broad range of KRAS mutants, including G12A/C/D/F/V/S, G13C/D, V14I, L19F, Q22K, D33E, Q61H, K117N and A146V/T. Inhibition of downstream signalling and proliferation was restricted to cancer cells harbouring mutant KRAS, and drug treatment suppressed KRAS mutant tumour growth in mice, without having a detrimental effect on animal weight. Our study suggests that most KRAS oncoproteins cycle between an active state and an inactive state in cancer cells and are dependent on nucleotide exchange for activation. Pan-KRAS inhibitors, such as the one described here, have broad therapeutic implications and merit clinical investigation in patients with KRAS-driven cancers.


Assuntos
Neoplasias , Proteínas Proto-Oncogênicas p21(ras) , Transdução de Sinais , Animais , Camundongos , Peso Corporal , Ativação Enzimática , Mutação , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Nucleotídeos/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Transdução de Sinais/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Especificidade por Substrato
2.
Nature ; 577(7790): 421-425, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31915379

RESUMO

KRAS GTPases are activated in one-third of cancers, and KRAS(G12C) is one of the most common activating alterations in lung adenocarcinoma1,2. KRAS(G12C) inhibitors3,4 are in phase-I clinical trials and early data show partial responses in nearly half of patients with lung cancer. How cancer cells bypass inhibition to prevent maximal response to therapy is not understood. Because KRAS(G12C) cycles between an active and inactive conformation4-6, and the inhibitors bind only to the latter, we tested whether isogenic cell populations respond in a non-uniform manner by studying the effect of treatment at a single-cell resolution. Here we report that, shortly after treatment, some cancer cells are sequestered in a quiescent state with low KRAS activity, whereas others bypass this effect to resume proliferation. This rapid divergent response occurs because some quiescent cells produce new KRAS(G12C) in response to suppressed mitogen-activated protein kinase output. New KRAS(G12C) is maintained in its active, drug-insensitive state by epidermal growth factor receptor and aurora kinase signalling. Cells without these adaptive changes-or cells in which these changes are pharmacologically inhibited-remain sensitive to drug treatment, because new KRAS(G12C) is either not available or exists in its inactive, drug-sensitive state. The direct targeting of KRAS oncoproteins has been a longstanding objective in precision oncology. Our study uncovers a flexible non-uniform fitness mechanism that enables groups of cells within a population to rapidly bypass the effect of treatment. This adaptive process must be overcome if we are to achieve complete and durable responses in the clinic.


Assuntos
Mutação , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Adaptação Biológica , Linhagem Celular Tumoral , Inibidores Enzimáticos/farmacologia , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Transdução de Sinais/efeitos dos fármacos
3.
Science ; 381(6659): 794-799, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37590355

RESUMO

The discovery of small-molecule inhibitors requires suitable binding pockets on protein surfaces. Proteins that lack this feature are considered undruggable and require innovative strategies for therapeutic targeting. KRAS is the most frequently activated oncogene in cancer, and the active state of mutant KRAS is such a recalcitrant target. We designed a natural product-inspired small molecule that remodels the surface of cyclophilin A (CYPA) to create a neomorphic interface with high affinity and selectivity for the active state of KRASG12C (in which glycine-12 is mutated to cysteine). The resulting CYPA:drug:KRASG12C tricomplex inactivated oncogenic signaling and led to tumor regressions in multiple human cancer models. This inhibitory strategy can be used to target additional KRAS mutants and other undruggable cancer drivers. Tricomplex inhibitors that selectively target active KRASG12C or multiple RAS mutants are in clinical trials now (NCT05462717 and NCT05379985).


Assuntos
Produtos Biológicos , Ciclofilina A , Imunofilinas , Chaperonas Moleculares , Neoplasias , Proteínas Proto-Oncogênicas p21(ras) , Humanos , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Cisteína/química , Cisteína/genética , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/química , Proteínas Proto-Oncogênicas p21(ras)/genética , Transdução de Sinais , Ciclofilina A/química , Ciclofilina A/metabolismo , Imunofilinas/química , Imunofilinas/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética
4.
Science ; 374(6564): 197-201, 2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34618566

RESUMO

Recently reported to be effective in patients with lung cancer, KRASG12C inhibitors bind to the inactive, or guanosine diphosphate (GDP)­bound, state of the oncoprotein and require guanosine triphosphate (GTP) hydrolysis for inhibition. However, KRAS mutations prevent the catalytic arginine of GTPase-activating proteins (GAPs) from enhancing an otherwise slow hydrolysis rate. If KRAS mutants are indeed insensitive to GAPs, it is unclear how KRASG12C hydrolyzes sufficient GTP to allow inactive state­selective inhibition. Here, we show that RGS3, a GAP previously known for regulating G protein­coupled receptors, can also enhance the GTPase activity of mutant and wild-type KRAS proteins. Our study reveals an unexpected mechanism that inactivates KRAS and explains the vulnerability to emerging clinically effective therapeutics.


Assuntos
GTP Fosfo-Hidrolases/metabolismo , Guanosina Trifosfato/metabolismo , Neoplasias Pulmonares/enzimologia , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas RGS/metabolismo , Animais , Extratos Celulares , Linhagem Celular Tumoral , Ativação Enzimática , Humanos , Hidrólise , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Camundongos Nus , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas RGS/genética , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Nat Med ; 23(8): 929-937, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28714990

RESUMO

The principles that govern the evolution of tumors exposed to targeted therapy are poorly understood. Here we modeled the selection and propagation of an amplification in the BRAF oncogene (BRAFamp) in patient-derived tumor xenografts (PDXs) that were treated with a direct inhibitor of the kinase ERK, either alone or in combination with other ERK signaling inhibitors. Single-cell sequencing and multiplex fluorescence in situ hybridization analyses mapped the emergence of extra-chromosomal amplification in parallel evolutionary trajectories that arose in the same tumor shortly after treatment. The evolutionary selection of BRAFamp was determined by the fitness threshold, the barrier that subclonal populations need to overcome to regain fitness in the presence of therapy. This differed for inhibitors of ERK signaling, suggesting that sequential monotherapy is ineffective and selects for a progressively higher BRAF copy number. Concurrent targeting of the RAF, MEK and ERK kinases, however, imposed a sufficiently high fitness threshold to prevent the propagation of subclones with high-level BRAFamp. When administered on an intermittent schedule, this treatment inhibited tumor growth in 11/11 PDXs of lung cancer or melanoma without apparent toxicity in mice. Thus, gene amplification can be acquired and expanded through parallel evolution, enabling tumors to adapt while maintaining their intratumoral heterogeneity. Treatments that impose the highest fitness threshold will likely prevent the evolution of resistance-causing alterations and, thus, merit testing in patients.


Assuntos
Adenocarcinoma/tratamento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Melanoma/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Neoplasias Cutâneas/tratamento farmacológico , Adenocarcinoma/genética , Adenocarcinoma de Pulmão , Adulto , Idoso , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Bevacizumab/administração & dosagem , Carboplatina/administração & dosagem , Cisplatino/administração & dosagem , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Feminino , Humanos , Hibridização in Situ Fluorescente , Neoplasias Pulmonares/genética , Masculino , Melanoma/genética , Melanoma/secundário , Camundongos , Pessoa de Meia-Idade , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Pemetrexede/administração & dosagem , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas B-raf/genética , Análise de Célula Única , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto , Quinases raf/antagonistas & inibidores
6.
Univ. med ; 59(4): 1-11, 2018. ilus
Artigo em Espanhol | LILACS, COLNAL | ID: biblio-995609

RESUMO

La intoxicación por acetaminofén es una de las causas más frecuentes de falla hepática aguda fulminante y una de las principales causas de atención en los servicios de urgencias, por intoxicación debida a medicamentos. Recientemente, se han registrado avances en la comprensión fisiopatológica, diagnóstico y tratamiento de esta entidad clínica. Los mecanismos de estrés oxidativo y daño del ADN mitocondrial explican los daños producidos en esta intoxicación. En esta revisión se presentan aspectos referentes a la epidemiología, mecanismos fisiopatológicos, diagnóstico y tratamiento de la intoxicación por acetaminofén.


Acetaminophen poisoning is one of the most frequent causes of acute fulminant hepatic failure and one of the main causes of care in emergency services due to drug intoxication. Recent progress has been made in the pathophysiological understanding, diagnosis and treatment of this clinical entity. The mechanisms of oxidative stress and mitochondrial DNA damage explain the damage caused by this intoxication. This review presents aspects related to the epidemiology, pathophysiological mechanisms, diagnosis and treatment of acetaminophen intoxication.


Assuntos
Humanos , Overdose de Drogas , Doença Hepática Induzida por Substâncias e Drogas , Acetaminofen
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA