Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Crit Rev Food Sci Nutr ; 62(7): 1870-1889, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33207956

RESUMO

The emergence of next-generation sequencing (NGS) technologies has revolutionized the way to investigate the microbial diversity in traditional fermentations. In the field of food microbial ecology, different NGS platforms have been used for community analysis, including 454 pyrosequencing from Roche, Illumina's instruments and Thermo Fisher's SOLiD/Ion Torrent sequencers. These recent platforms generate information about millions of rDNA amplicons in a single running, enabling accurate phylogenetic resolution of microbial taxa. This review provides a comprehensive overview of the application of NGS for microbiome analysis of traditional fermented milk products worldwide. Fermented milk products covered in this review include kefir, buttermilk, koumiss, dahi, kurut, airag, tarag, khoormog, lait caillé, and suero costeño. Lactobacillus-mainly represented by Lb. helveticus, Lb. kefiranofaciens, and Lb. delbrueckii-is the most important and frequent genus with 51 reported species. In general, dominant species detected by culturing were also identified by NGS. However, NGS studies have revealed a more complex bacterial diversity, with estimated 400-600 operational taxonomic units, comprising uncultivable microorganisms, sub-dominant populations, and late-growing species. This review explores the importance of these discoveries and address related topics on workflow, NGS platforms, and knowledge bioinformatics devoted to fermented milk products. The knowledge that has been gained is vital in improving the monitoring, manipulation, and safety of these traditional fermented foods.


Assuntos
Produtos Fermentados do Leite , Bactérias/genética , Produtos Fermentados do Leite/microbiologia , Fermentação , Sequenciamento de Nucleotídeos em Larga Escala , Lactobacillus , Filogenia
2.
World J Microbiol Biotechnol ; 37(7): 118, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34131809

RESUMO

This review provides an overview of the application of next-generation sequencing (NGS) technologies for microbiome analysis of cocoa beans fermentation. The cocoa-producing regions where NGS has been applied include Brazil, Ghana, Ivory Coast, Cameroon, Nicaragua, and Colombia. The data collected were processed by principal component analysis (PCA) and Venn diagrams to perform a multivariate association between microbial diversity and cocoa-producing regions. NGS studies have confirmed the dominance of three major microbial groups revealed by culture-dependent approaches, i.e., lactic acid bacteria, acetic acid bacteria, and yeasts. However, a more complex microbial diversity has been revealed, comprising sub-dominant populations, late-growing species, and uncultivable microorganisms. A total of 99 microbial genera and species were for the first time reported in cocoa beans fermentation, such as Brevibacillus sp., Halomonas meridiana, Methylobacterium sp., Novosphingobium sp., and Paenibacillus pabuli. PCA and Venn diagrams showed that species composition is rarely fixed and often experiences fluctuations of varying degrees and at varying frequencies between different cocoa-producing regions. Understanding these differences will provide further directions for exploring the functional and metabolic activity of rare and abundant taxa, as well as their use as starter cultures to obtain high-quality cocoa beans.


Assuntos
Bactérias/classificação , Cacau/microbiologia , Análise de Sequência de DNA/métodos , Leveduras/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Fenômenos Fisiológicos Bacterianos , DNA Bacteriano/genética , DNA Fúngico/genética , Fermentação , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Leveduras/genética , Leveduras/isolamento & purificação , Leveduras/fisiologia
3.
Int J Food Microbiol ; 339: 109015, 2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33340944

RESUMO

Glucose and fructose are the main fermentable sugars in cocoa pulp. During fermentation, glucose is consumed within 48-72 h and fructose only after 120 h, mainly associated with the preferential use of glucose by microorganisms. In the first stage of this study, the complete genome sequence of a lactic acid bacterium with high fructose consumption capacity (Lactobacillus plantarum LPBF35) was reported. The notable genomic features of L. plantarum LPBF35 were the presence of alcohol/acetaldehyde dehydrogenase gene and improved PTS system, confirming its classification as a "facultatively" fructophilic bacterium. Subsequently, this bacterium was introduced into cocoa fermentation process in single and mixed cultures with Pediococcus acidilactici LPBF66 or Pichia fermentans YC5.2. Community composition by Illumina-based amplicon sequencing and viable counts indicated suppression of wild microflora in all treatments. At the beginning of the fermentation processes, cocoa pulp consisted of approximately 73.09 mg/g glucose and 73.64 mg/g fructose. The L. plantarum LPBF35 + P. fermentans YC5.2 process showed the lowest levels of residual sugars after 72 h of fermentation (7.89 and 4.23 mg/g, for fructose and glucose, respectively), followed by L. plantarum LPBF35 + Ped. acidilactici LPBF66 (8.85 and 6.42 mg/g, for fructose and glucose, respectively), single L. plantarum LPBF35 treatment (4.15 and 10.15 mg/g, for fructose and glucose, respectively), and spontaneous process (22.25 and 14.60 mg/g, for fructose and glucose, respectively). The positive interaction between L. plantarum LPBF35 and P. fermentans YC5.2 resulted in an improved formation of primary (ethanol, lactic acid, and acetic acid) and secondary (2-methyl-1-butanol, isoamyl acetate, and ethyl acetate) metabolites during fermentation. The primary metabolites accumulated significantly in cocoa beans fermented by P. fermentans YC5.2 + L. plantarum LPBF35, causing important reactions of color development and key flavor molecules formation. The results of this study suggest that fructophilic lactic acid bacteria and yeast is a microbial consortium that could improve sugar metabolism and aroma formation during cocoa beans fermentation.


Assuntos
Cacau/metabolismo , Cacau/microbiologia , Fermentação , Microbiologia de Alimentos , Lactobacillus plantarum/metabolismo , Interações Microbianas , Açúcares/metabolismo , Ácido Acético/metabolismo , Lactobacillus plantarum/genética , Lactobacillus plantarum/crescimento & desenvolvimento , Odorantes , Pediococcus acidilactici/metabolismo , Pichia/metabolismo
4.
Enzyme Microb Technol ; 149: 109836, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34311881

RESUMO

Complex carbohydrates, proteins, and other food components require a longer digestion process to be absorbed by the lining of the alimentary canal. In addition to the enzymes of the gastrointestinal tract, gut microbiota, comprising a large range of bacteria and fungi, has complementary action on the production of digestive enzymes. Within this universe of "hidden soldiers", lactobacilli are extensively studied because of their ability to produce lactase, proteases, peptidases, fructanases, amylases, bile salt hydrolases, phytases, and esterases. The administration of living lactobacilli cells has been shown to increase nutrient digestibility. However, it is still little known how these microbial-derived enzymes act in the human body. Enzyme secretion may be affected by variations in temperature, pH, and other extreme conditions faced by the bacterial cells in the human body. Besides, lactobacilli administration cannot itself be considered the only factor interfering with enzyme secretion, human diet (microbial substrate) being determinant in their metabolism. This review highlights the potential of lactobacilli to release functional enzymes associated with the digestive process and how this complex metabolism can be explored to contribute to the human diet. Enzymatic activity of lactobacilli is exerted in a strain-dependent manner, i.e., within the same lactobacilli species, there are different enzyme contents, leading to a large variety of enzymatic activities. Thus, we report current methods to select the most promising lactobacilli strains as sources of bioactive enzymes. Finally, a patent landscape and commercial products are described to provide the state of art of the transfer of knowledge from the scientific sphere to the industrial application.


Assuntos
6-Fitase , Lactobacillus , Bactérias , Digestão , Trato Gastrointestinal , Humanos
5.
Sci Rep ; 10(1): 2060, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-32029873

RESUMO

Petroleum is an important energy source. Due to its intensive exploration, accidents resulting in oil spills on soil are frequent, which creates consequences to ecosystems and human health. Rhizodegradation is an efficient technique that promotes the decontamination of polluted environments through the selection and use of rhizosphere microorganisms from phytoremediation plants. The aim of this study was to isolate, identify and characterize bacteria capable of degrading petroleum from the rhizosphere of Panicum aquaticum Poir., a plant that grows in petroleum contaminated soils. Three bacteria were isolated and characterized at the morphological (Gram staining), molecular (16S rRNA gene sequence analysis) and biochemical level. These bacteria were identified as new strains of Bacillus thurigiensis, Bacillus pumilus and Rhodococcus hoagii, which have been reported as potential bioremediators in the literature. All three bacteria were able to use petroleum hydrocarbons as the sole carbon source during in vitro degradation assays. Gas chromatography analysis of these assays indicated reductions of petroleum hydrocarbons between 23% and 96% within 48 h. Among the isolated bacteria, Rhodococcus hoagii presented the highest efficiency of petroleum consumption, reaching 87% of degradation after only 24 h of cultivation, which corresponds to a higher and faster degradation than previously reported, confirming the potential use of Rhodococcus hoagii for petroleum biodegradation.


Assuntos
Biodegradação Ambiental , Panicum/microbiologia , Petróleo/metabolismo , Rizosfera , Rhodococcus equi/metabolismo , DNA Bacteriano/isolamento & purificação , Poluição por Petróleo , RNA Ribossômico 16S/genética , Rhodococcus equi/genética , Rhodococcus equi/isolamento & purificação
6.
Food Res Int ; 136: 109478, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32846561

RESUMO

Fructophilic lactic acid bacteria (FLAB) are a recently discovered group whose main characteristic is to prefer D-fructose over D-glucose. In this study, laboratory cocoa beans fermentation was analyzed by Illumina-based amplicon sequencing, indicating the presence of potential FLAB of the genera Fructobacillus and Lactobacillus. Eighty efficient fructose-fermenting isolates, obtained from fermenting cocoa pulp beans mass, were identified by 16S rRNA gene sequencing as Pediococcus acidilactici (n = 52), Lactobacillus plantarum (n = 10), Pediococcus pentosaceus (n = 10), Bacillus subtilis (n = 4), and Leuconostoc pseudomesenteroides (n = 4). The growth characteristics of all the 10 L. plantarum strains classified them as "facultatively" fructophilic bacteria, i.e., they grew on glucose without an external electron acceptor but the growth on fructose was faster. Among them, L. plantarum LPBF 35 was characterized by producing a range of aroma-impacting compounds (acetaldehyde, ethyl acetate, nonanal, and octanoic acid), being introduced into a cocoa fermentation process. Although the process started with approximately equal amounts of glucose and fructose, a concomitant, but faster utilization of fructose, was observed in cocoa fermentation conducted with L. plantarum LPBF 35 (with no residual fructose observed) when compared to control fermentation using a glucophilic strain (8.77 mg/g residual fructose) and a spontaneous process (8.38 mg/g residual fructose). L. plantarum LPBF 35 also showed an ideal profile of organic acid metabolism (citric acid consumption and lactic acid production) associated with cocoa fermentation. These results proved new insights on cocoa microbial activity and brings new perspectives on the use of lactic acid bacteria as starter culture.


Assuntos
Lactobacillales , Fermentação , Lactobacillales/genética , Leuconostoc/genética , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA