Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
BMC Infect Dis ; 24(1): 841, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39164637

RESUMO

BACKGROUND: According to Norwegian registries, 91% of individuals ≥ 16 years had received ≥ 1 dose of COVID-19 vaccine by mid-July 2022, whereas less than 2% of children < 12 years were vaccinated. Confirmed COVID-19 was reported for 27% of the population, but relaxation of testing lead to substantial underreporting. We have characterized the humoral immunity to SARS-CoV-2 in Norway in the late summer of 2022 by estimating the seroprevalence and identifying antibody profiles based on reactivity to Wuhan or Omicron-like viruses in a nationwide cross-sectional collection of residual sera, and validated our findings using cohort sera. METHODS: 1,914 anonymized convenience sera and 243 NorFlu-cohort sera previously collected from the Oslo-area with reported infection and vaccination status were analyzed for antibodies against spike, the receptor-binding domain (RBD) of the ancestral Wuhan strain and Omicron BA.2 RBD, and nucleocapsid (N). Samples were also tested for antibodies inhibiting RBD-ACE2 interaction. Neutralization assays were performed on subsets of residual sera against B.1, BA.2, XBB.1.5 and BQ.1.1. RESULTS: The national seroprevalence estimate from vaccination and/or infection was 99.1% (95% CrI 97.0-100.0%) based on Wuhan (spike_W and RBD_W) and RBD_BA2 antibodies. Sera from children < 12 years had 2.2 times higher levels of antibodies against RBD_BA2 than RBD_W and their seroprevalence estimate showed a 14.4 percentage points increase when also including anti-RBD_BA2 antibodies compared to Wuhan-antibodies alone. 50.3% (95% CI 45.0-55.5%) of residual sera from children and 38.1% (95% CI 36.0-40.4%) of all residual sera were positive for anti-N-antibodies. By combining measurements of binding- and ACE2-RBD-interaction-inhibiting antibodies, reactivity profiles indicative of infection and vaccination history were identified and validated using cohort sera. Residual sera with a profile indicative of hybrid immunity were able to neutralize newer Omicron variants XBB.1.5 and BQ.1.1. CONCLUSIONS: By late summer of 2022, most of the Norwegian population had antibodies to SARS-CoV-2, and almost all children had been infected. Antibody profiles indicated that children mostly had experienced a primary Omicron infection, while hybrid immunity was common among adults. The finding that sera displaying hybrid immunity could neutralize newer Omicron variants indicates that Wuhan-like priming of the immune response did not have a harmful imprinting effect and that infections induce cross-reacting antibodies against future variants.


Assuntos
Anticorpos Antivirais , Vacinas contra COVID-19 , COVID-19 , SARS-CoV-2 , Humanos , COVID-19/epidemiologia , COVID-19/imunologia , Anticorpos Antivirais/sangue , SARS-CoV-2/imunologia , Noruega/epidemiologia , Estudos Soroepidemiológicos , Criança , Adulto , Adolescente , Pessoa de Meia-Idade , Masculino , Pré-Escolar , Feminino , Adulto Jovem , Vacinas contra COVID-19/imunologia , Idoso , Lactente , Estudos Transversais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia
2.
J Immunol ; 197(9): 3575-3585, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27671110

RESUMO

It has been difficult to translate promising results from DNA vaccination in mice to larger animals and humans. Previously, DNA vaccines encoding proteins that target Ag to MHC class II (MHC-II) molecules on APCs have been shown to induce rapid, enhanced, and long-lasting Ag-specific Ab titers in mice. In this study, we describe two novel DNA vaccines that as proteins target HLA class II (HLA-II) molecules. These vaccine proteins cross-react with MHC-II molecules in several species of larger mammals. When tested in ferrets and pigs, a single DNA delivery with low doses of the HLA-II-targeted vaccines resulted in rapid and increased Ab responses. Importantly, painless intradermal jet delivery of DNA was as effective as delivery by needle injection followed by electroporation. As an indication that the vaccines could also be useful for human application, HLA-II-targeted vaccine proteins were found to increase human CD4+ T cell responses by a factor of ×103 in vitro. Thus, targeting of Ag to MHC-II molecules may represent an attractive strategy for increasing efficacy of DNA vaccines in larger animals and humans.


Assuntos
Formação de Anticorpos , Células Apresentadoras de Antígenos/imunologia , Linfócitos T CD4-Positivos/imunologia , Vacinas de DNA/imunologia , Animais , Antígenos/metabolismo , Proliferação de Células , Células Cultivadas , Reações Cruzadas , Furões , Antígenos HLA/metabolismo , Antígenos de Histocompatibilidade Classe II/metabolismo , Humanos , Ativação Linfocitária , Camundongos , Suínos , Vacinação
3.
Eur J Immunol ; 45(2): 624-35, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25410055

RESUMO

Targeting antigens to cross-presenting dendritic cells (DCs) is a promising method for enhancing CD8(+) T-cell responses. However, expression patterns of surface receptors often vary between species, making it difficult to relate observations in mice to other animals. Recent studies have indicated that the chemokine receptor Xcr1 is selectively expressed on cross-presenting murine CD8α(+) DCs, and that the expression is conserved on homologous DC subsets in humans (CD141(+) DCs), sheep (CD26(+) DCs), and macaques (CADM1(+) DCs). We therefore tested if targeting antigens to Xcr1 on cross-presenting DCs using antigen fused to Xcl1, the only known ligand for Xcr1, could enhance immune responses. Bivalent Xcl1 fused to model antigens specifically bound CD8α(+) DCs and increased proliferation of antigen-specific T cells. DNA vaccines encoding dimeric Xcl1-hemagglutinin (HA) fusion proteins induced cytotoxic CD8(+) T-cell responses, and mediated full protection against a lethal challenge with influenza A virus. In addition to enhanced CD8(+) T-cell responses, targeting of antigen to Xcr1 induced CD4(+) Th1 responses and highly selective production of IgG2a antibodies. In conclusion, targeting of dimeric fusion vaccine molecules to CD8α(+) DCs using Xcl1 represents a novel and promising method for induction of protective CD8(+) T-cell responses.


Assuntos
Anticorpos Antivirais/biossíntese , Células Dendríticas/efeitos dos fármacos , Imunoglobulina G/biossíntese , Vacinas contra Influenza/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Receptores de Quimiocinas/imunologia , Linfócitos T Citotóxicos/efeitos dos fármacos , Animais , Proliferação de Células , Apresentação Cruzada , Células Dendríticas/imunologia , Feminino , Expressão Gênica , Células HEK293 , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Humanos , Imunidade Celular , Vírus da Influenza A/efeitos dos fármacos , Vírus da Influenza A/imunologia , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/biossíntese , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Receptores de Quimiocinas/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Linfócitos T Citotóxicos/imunologia , Células Th1/efeitos dos fármacos , Células Th1/imunologia
4.
Influenza Other Respir Viruses ; 17(6): e13144, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37273461

RESUMO

New immune evasive variants of SARS-CoV-2 continue to emerge, potentially causing new waves of covid-19 disease. Here, we evaluate levels of neutralizing antibodies against isolates of Omicron variants, including BQ.1.1 and XBB, in sera harvested 3-4 weeks after vaccination or breakthrough infections. In addition, we evaluate neutralizing antibodies in 32 sera from October 2022, to evaluate immunity in Norwegian donors prior to the winter season. Most serum samples harvested in October 2022 had low levels of neutralizing antibodies against BQ.1.1 and especially XBB, explaining why these variants and their descendants have dominated in Norway during the 2022 and 2023 winter season.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiologia , Noruega/epidemiologia , Anticorpos Neutralizantes , Anticorpos Antivirais
5.
PNAS Nexus ; 2(12): pgad403, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38077689

RESUMO

Immunocompromised patients often fail to raise protective vaccine-induced immunity against the global emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants. Although monoclonal antibodies have been authorized for clinical use, most have lost their ability to potently neutralize the evolving Omicron subvariants. Thus, there is an urgent need for treatment strategies that can provide protection against these and emerging SARS-CoV-2 variants to prevent the development of severe coronavirus disease 2019. Here, we report on the design and characterization of a long-acting viral entry-blocking angiotensin-converting enzyme 2 (ACE2) dimeric fusion molecule. Specifically, a soluble truncated human dimeric ACE2 variant, engineered for improved binding to the receptor-binding domain of SARS-CoV-2, was fused with human albumin tailored for favorable engagement of the neonatal fragment crystallizable receptor (FcRn), which resulted in enhanced plasma half-life and allowed for needle-free transmucosal delivery upon nasal administration in human FcRn-expressing transgenic mice. Importantly, the dimeric ACE2-fused albumin demonstrated potent neutralization of SARS-CoV-2 immune escape variants.

6.
Mol Endocrinol ; 22(1): 91-104, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17901130

RESUMO

The nuclear receptor steroidogenic factor-1 (SF1) is critical for development and function of steroidogenic tissues. Posttranslational modifications are known to influence the transcriptional capacity of SF1, and it was previously demonstrated that serine 203 is phosphorylated. In this paper we report that serine 203 is phosphorylated by a cyclin-dependent kinase 7 (CDK7)-mediated process. As part of the CDK-activating kinase complex, CDK7 is a component of the basal transcription factor TFIIH, and phosphorylation of SF1 as well as SF1-dependent transcription was clearly reduced in cells carrying a mutation that renders the CDK-activating kinase complex unable to interact with the TFIIH core. Coimmunoprecipitation analyses revealed that SF1 and CDK7 reside in the same complex, and kinase assays demonstrated that immunoprecipitated CDK7 and purified TFIIH phosphorylate SF1 in vitro. The CDK inhibitor roscovitine blocked phosphorylation of SF1, and an inactive form of CDK7 repressed the phosphorylation level and the transactivation capacity of SF1. Structural studies have identified phosphoinositides as potential ligands for SF1. Interestingly, we found that mutations designed to block phospholipid binding dramatically decreased the level of SF1 phosphorylation. Together our results suggest a connection between ligand occupation and phosphorylation and association with the basic transcriptional machinery, indicating an intricate regulation of SF1 transactivation.


Assuntos
Quinases Ciclina-Dependentes/metabolismo , Fator Esteroidogênico 1/metabolismo , Proteínas de Fase Aguda/genética , Proteínas de Fase Aguda/metabolismo , Sequência de Aminoácidos , Animais , Western Blotting , Células COS , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular , Linhagem Celular , Chlorocebus aethiops , Quinases Ciclina-Dependentes/antagonistas & inibidores , Quinases Ciclina-Dependentes/genética , Células HeLa , Humanos , Imunoprecipitação , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Dados de Sequência Molecular , Mutação , Fosfolipídeos/metabolismo , Fosforilação/efeitos dos fármacos , Ligação Proteica , Purinas/farmacologia , Roscovitina , Serina/metabolismo , Fator Esteroidogênico 1/genética , Fator de Transcrição TFIIH/genética , Fator de Transcrição TFIIH/metabolismo , Fatores de Transcrição , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA