Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 116(17): 8597-8602, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30944225

RESUMO

In plants, postembryonic formation of new organs helps shape the adult organism. This requires the tight regulation of when and where a new organ is formed and a coordination of the underlying cell divisions. To build a root system, new lateral roots are continuously developing, and this process requires the tight coordination of asymmetric cell division in adjacent pericycle cells. We identified EXPANSIN A1 (EXPA1) as a cell wall modifying enzyme controlling the divisions marking lateral root initiation. Loss of EXPA1 leads to defects in the first asymmetric pericycle cell divisions and the radial swelling of the pericycle during auxin-driven lateral root formation. We conclude that a localized radial expansion of adjacent pericycle cells is required to position the asymmetric cell divisions and generate a core of small daughter cells, which is a prerequisite for lateral root organogenesis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Divisão Celular , Raízes de Plantas , Arabidopsis/citologia , Arabidopsis/enzimologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Divisão Celular/genética , Divisão Celular/fisiologia , Parede Celular/genética , Parede Celular/fisiologia , Raízes de Plantas/citologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/fisiologia , Transcriptoma
2.
Plant Cell Physiol ; 62(8): 1269-1279, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33725093

RESUMO

Lateral root formation determines to a large extent the ability of plants to forage their environment and thus their growth. In Arabidopsis thaliana and other angiosperms, lateral root initiation requires radial cell expansion and several rounds of anticlinal cell divisions that give rise to a central core of small cells, which express different markers than the larger surrounding cells. These small central cells then switch their plane of divisions to periclinal and give rise to seemingly morphologically similar daughter cells that have different identities and establish the different cell types of the new root. Although the execution of these anticlinal and periclinal divisions is tightly regulated and essential for the correct development of the lateral root, we know little about their geometrical features. Here, we generate a four-dimensional reconstruction of the first stages of lateral root formation and analyze the geometric features of the anticlinal and periclinal divisions. We identify that the periclinal divisions of the small central cells are morphologically dissimilar and asymmetric. We show that mother cell volume is different when looking at anticlinal vs. periclinal divisions and the repeated anticlinal divisions do not lead to reduction in cell volume, although cells are shorter. Finally, we show that cells undergoing a periclinal division are characterized by a strong cell expansion. Our results indicate that cells integrate growth and division to precisely partition their volume upon division during the first two stages of lateral root formation.


Assuntos
Arabidopsis/anatomia & histologia , Arabidopsis/crescimento & desenvolvimento , Diferenciação Celular , Divisão Celular , Proliferação de Células , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/crescimento & desenvolvimento , Arabidopsis/genética , Variação Genética , Genótipo , Microscopia de Fluorescência/métodos , Raízes de Plantas/genética
3.
New Phytol ; 208(3): 873-86, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26075497

RESUMO

Root colonization by the beneficial fungus Piriformospora indica is controlled by plant innate immunity, but factors that channel this interaction into a mutualistic relationship are not known. We have explored the impact of abscisic acid (ABA) and osmotic stress on the P. indica interaction with Arabidopsis thaliana. The activation of plant innate immunity in roots was determined by measuring the concentration of the phytoalexin camalexin and expression of transcription factors regulating the biosynthesis of tryptophan-related defence metabolites. Furthermore, the impact of the fungus on the content of ABA, salicylic acid, jasmonic acid (JA) and JA-related metabolites was examined. We demonstrated that treatment with exogenous ABA or the ABA analogue pyrabactin increased fungal colonization efficiency without impairment of plant fitness. Concomitantly, ABA-deficient mutants of A. thaliana (aba1-6 and aba2-1) were less colonized, while plants exposed to moderate stress were more colonized than corresponding controls. Sustained exposure to ABA attenuated expression of transcription factors MYB51, MYB122 and WRKY33 in roots upon P. indica challenge or chitin treatment, and prevented an increase in camalexin content. The results indicate that ABA can strengthen the interaction with P. indica as a consequence of its impact on plant innate immunity. Consequently, ABA will be relevant for the establishment and outcome of the symbiosis under stress conditions.


Assuntos
Ácido Abscísico/metabolismo , Arabidopsis/microbiologia , Basidiomycota/fisiologia , Raízes de Plantas/microbiologia , Arabidopsis/imunologia , Arabidopsis/metabolismo , Etilenos , Regulação da Expressão Gênica de Plantas , Imunidade Inata , Indóis/metabolismo , Naftalenos , Pressão Osmótica , Raízes de Plantas/imunologia , Raízes de Plantas/metabolismo , Estresse Fisiológico , Sulfonamidas , Simbiose , Tiazóis/metabolismo , Triptofano/metabolismo
4.
Curr Biol ; 29(15): 2443-2454.e5, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31327713

RESUMO

How plant cells re-establish differential growth to initiate organs is poorly understood. Morphogenesis of lateral roots relies on the asymmetric cell division of initially symmetric founder cells. This division is preceded by the tightly controlled asymmetric radial expansion of these cells. The cellular mechanisms that license and ensure the coordination of these events are unknown. Here, we quantitatively analyze microtubule and F-actin dynamics during lateral root initiation. Using mutants and pharmacological and tissue-specific genetic perturbations, we show that dynamic reorganization of both microtubule and F-actin networks is necessary for the asymmetric expansion of the founder cells. This cytoskeleton remodeling intertwines with auxin signaling in the pericycle and endodermis in order for founder cells to acquire a basic polarity required for initiating lateral root development. Our results reveal the conservation of cell remodeling and polarization strategies between the Arabidopsis zygote and lateral root founder cells. We propose that coordinated, auxin-driven reorganization of the cytoskeleton licenses asymmetric cell growth and divisions during embryonic and post-embryonic organogenesis.


Assuntos
Actinas/metabolismo , Arabidopsis/crescimento & desenvolvimento , Microtúbulos/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Arabidopsis/metabolismo , Citoesqueleto/metabolismo , Raízes de Plantas/metabolismo
5.
Curr Opin Plant Biol ; 23: 31-8, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25449724

RESUMO

Lateral roots are formed postembryonically and determine the final shape of the root system, a determinant of the plants ability to uptake nutrients and water. The lateral root primordia are initiated deep into the main root and to protrude out the primary root they have to grow through three cell layers. Recent findings have revealed that these layers are not merely a passive physical obstacle to the emergence of the lateral root but have an active role in its formation. Here, we review examples of communication between the lateral root primordium and the surrounding tissues, highlighting the importance of auxin-mediated growth coordination as well as cell and tissue mechanics for the morphogenesis of lateral roots.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Parede Celular/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Modelos Biológicos , Epiderme Vegetal/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA