Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(14)2023 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-37511585

RESUMO

Circulating extracellular microvesicles (cEVs) are characterised by presenting surface antigens of parental cells. Since their biogenesis involves the translocation of phosphatidylserine (PS) from the inner to the outer leaflet of the plasma membrane, exposed PS has been considered as a recognition hallmark of cEVs. However, not all cEVs externalise PS. In this study, we have phenotypically and quantitatively characterised cEVs by flow cytometry, paying special attention to the proportions of PS in chronic heart failure patients (cHF; n = 119) and a reference non-HF group (n = 21). PS--cEVs were predominantly found in both groups. Parental markers showed differential pattern depending on the PS exposure. Endothelium-derived and connexin 43-rich cEVs were mainly PS--cEVs and significantly increased in cHF. On the contrary, platelet-derived cEVs were mostly PS+ and were increased in the non-HF group. We observed similar levels of PS+- and PS--cEVs in non-HF subjects when analysing immune cell-derived Evs, but there was a subset-specific difference in cHF patients. Indeed, those cEVs carrying CD45+, CD29+, CD11b+, and CD15+ were mainly PS+-cEVs, while those carrying CD14+, CD3+, and CD56+ were mainly PS--cEVs. In conclusion, endothelial and red blood cells are stressed in cHF patients, as detected by a high shedding of cEVs. Despite PS+-cEVs and PS--cEVs representing two distinct cEV populations, their release and potential function as both biomarkers and shuttles for cell communication seem unrelated to their PS content.


Assuntos
Vesículas Extracelulares , Insuficiência Cardíaca , Humanos , Fosfatidilserinas/metabolismo , Eritrócitos/metabolismo , Vesículas Extracelulares/metabolismo , Endotélio/metabolismo
2.
Int J Mol Sci ; 23(23)2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36499552

RESUMO

Heart failure (HF) is a complex disease entity with high clinical impact, poorly understood pathophysiology and scantly known miRNA-mediated epigenetic regulation. We have analysed miRNA patterns in patients with chronic HF (cHF) and a sex- and age-matched reference group and pursued an in silico system biology analysis to discern pathways involved in cHF pathophysiology. Twenty-eight miRNAs were identified in cHF that were up-regulated in the reference group, and eight of them were validated by RT-qPCR. In silico analysis of predicted targets by STRING protein-protein interaction networks revealed eight cluster networks (involving seven of the identified miRNAs) enriched in pathways related to cell cycle, Ras, chemokine, PI3K-AKT and TGF-ß signaling. By ROC curve analysis, combined probabilities of these seven miRNAs (let-7a-5p, miR-107, miR-125a-5p, miR-139-5p, miR-150-5p, miR-30b-5p and miR-342-3p; clusters 1-4 [C:1-4]), discriminated between HF with preserved ejection fraction (HFpEF) and HF with reduced ejection fraction (HFrEF), and ischaemic and non-ischaemic aetiology. A combination of miR-107, miR-139-5p and miR-150-5p, involved in clusters 5 and 7 (C:5+7), discriminated HFpEF from HFrEF. Pathway enrichment analysis of miRNAs present in C:1-4 (let-7a-5p, miR-125a-5p, miR-30b-5p and miR-342-3p) revealed pathways related to HF pathogenesis. In conclusion, we have identified a differential signature of down-regulated miRNAs in the plasma of HF patients and propose novel cellular mechanisms involved in cHF pathogenesis.


Assuntos
Insuficiência Cardíaca , MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Insuficiência Cardíaca/genética , Biologia de Sistemas , Fosfatidilinositol 3-Quinases/metabolismo , Epigênese Genética , Volume Sistólico , Perfilação da Expressão Gênica
3.
Thromb Haemost ; 123(9): 892-903, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37075787

RESUMO

BACKGROUND: Extracellular vesicles (EVs), shed in response to cell activation, stress, or injury, are increased in the blood of patients with cardiovascular disease. EVs are characterized by expressing parental-cell antigens, allowing the determination of their cellular origin. Platelet-derived EVs (pEVs) are the most abundant in blood. Although not universally given, EVs generally express phosphatidylserine (PS) in their membrane. OBJECTIVES: To investigate pEVs in chronic and acute conditions, such as chronic heart failure (CHF) and first-onset acute coronary syndrome (ACS), in patients treated as per guidelines. METHODS: EVs in CHF patients (n = 119), ACS patients (n = 58), their respective controls (non-CHF [n = 21] and non-ACS [n = 24], respectively), and a reference control group (n = 31) were characterized and quantified by flow cytometry, using monoclonal antibodies against platelet antigens, and annexin V (AV) to determine PS exposure. RESULTS: CHF patients had higher EVs-PS- numbers, while ACS had predominantly EVs-PS+. In contrast to ACS, CHF patients had significantly reduced numbers of pEVs carrying PECAM and αIIb-integrin epitopes (CD31+/AV+, CD41a+/AV+, and CD31+/CD41a+/AV+), while no differences were observed in P-selectin-rich pEVs (CD62P+/AV+) compared with controls. Additionally, background etiology of CHF (ischemic vs. nonischemic) or ACS type (ST-elevation myocardial infarction [STEMI] vs. non-STEMI [NSTEMI]) did not affect pEV levels. CONCLUSION: PS exposure in EV and pEV-release differ between CHF and ACS patients, with tentatively different functional capacities beyond coagulation to inflammation and cross-talk with other cell types.


Assuntos
Síndrome Coronariana Aguda , Vesículas Extracelulares , Humanos , Vesículas Extracelulares/metabolismo , Plaquetas/metabolismo , Anticorpos Monoclonais/metabolismo , Inflamação/metabolismo
4.
Front Cardiovasc Med ; 9: 939625, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36407432

RESUMO

Leukocyte-shed extracellular vesicles (EVs) can play effector roles in the pathophysiological mechanisms of different diseases. These EVs released by membrane budding of leukocytes have been found in high amounts locally in inflamed tissues and in the circulation, indicating immunity cell activation. These EVs secreted by immune cell subsets have been minimally explored and deserve further investigation in many areas of disease. In this study we have investigated whether in heart failure there is innate and adaptive immune cell release of EVs. Patients with chronic heart failure (cHF) (n = 119) and in sex- and age-matched controls without this chronic condition (n = 60). Specifically, EVs were quantified and phenotypically characterized by flow cytometry and cell-specific monoclonal antibodies. We observed that even in well medically controlled cHF patients (with guideline-directed medical therapy) there are higher number of blood annexin-V+ (phosphatidylserine+)-EVs carrying activated immunity cell-epitopes in the circulation than in controls (p < 0.04 for all cell types). Particularly, EVs shed by monocytes and neutrophils (innate immunity) and by T-lymphocytes and natural-killer cells (adaptive immunity) are significantly higher in cHF patients. Additionally, EVs-shed by activated leukocytes/neutrophils (CD11b+, p = 0.006; CD29+/CD15+, p = 0.048), and T-lymphocytes (CD3+/CD45+, p < 0.02) were positively correlated with cHF disease severity (NYHA classification). Interestingly, cHF patients with ischemic etiology had the highest levels of EVs shed by lymphocytes and neutrophils (p < 0.045, all). In summary, in cHF patients there is a significant immune cell activation shown by high-release of EVs that is accentuated by clinical severity of cHF. These activated innate and adaptive immunity cell messengers may contribute by intercellular communication to the progression of the disease and to the common affectation of distant organs in heart failure (paracrine regulation) that contribute to the clinical deterioration of cHF patients.

5.
Front Cell Dev Biol ; 9: 716435, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34395448

RESUMO

Increased life expectancy is usually associated with comorbidities, such as cardio and cerebrovascular disease causing impaired functionality. A common underlying cause of these comorbidities is vascular inflammation and injury. Elevated levels of circulating microvesicles (cMV), as a product of a hemostatic and inflammatory cell activation, could be direct mapping of an imbalanced hemostasis. In this manuscript, we aimed to investigate by liquid biopsy whether successful aging can be discriminated by cMV levels and phenotype. To this purpose, we included 135 community-dwelling octogenarians in a cross-sectional study. Successful aging was defined as good functional (Barthel Index > 90 points, and Lawton index score > 7/4 points for women and men, respectively) and cognitive status (Spanish version of the Mini-Mental State Examination -MEC- > 24 points) and no need for institutionalization. Total, annexin V positive (AV+), and AV- cMV from different cell origins from the vascular compartment were phenotypically characterized and quantified from fasting plasma samples by flow cytometry. Successful aging was associated with lower plasma concentrations of total and AV+ CD141+/CD41+-CD61+, and PAC1+/AV+, CD141+/AV+, and CD36+/AV- cMV. From these phenotypes, ROC curve analyses revealed that CD141+/AV+ and CD141+/CD41+-CD61+/AV+ endothelial- and platelet-derived cMV discriminate successful and non-successful aging with an AUC (95%CI) of 0.655 (0.551, 0.758), P = 0.005, and 0.638 (0.535, 0.741), P = 0.013, respectively. In conclusion, successful aging is associated with low levels of cMV released by endothelial cells and platelets, indicating lower endothelial cell inflammation and platelet activation. Our results contribute to the understanding of the link between unsuccessful aging, cognitive decline and vascular cell inflammatory disturbances.

6.
Antioxid Redox Signal ; 33(9): 645-662, 2020 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-31696726

RESUMO

Significance: Circulating microvesicles (cMV) are small (0.1-1 µm) phospholipid-rich blebs released by almost all cell types, and their release increases with cell activation and injury, thus reflecting the state of the cell from which they are originated. Microvesicles (MV) are found in the bloodstream, and they affect the phenotype of recipient cells, after local or systemic circulation, by intercellular transfer of their molecular content. Recent Advances: Several studies suggest the use of cell-specific MV subpopulations as predictive biomarkers for cardiovascular diseases (CVDs) at different stages and degrees of severity. In this review, we describe the state of the art of cMV as noninvasive surrogate biomarkers of vascular injury and dysfunction correlated with poor clinical outcomes in CVD. Critical Issues: Despite the growing body of evidence supporting the importance of cMV as hallmarks of CVD and their utility as biomarkers of CVD, the specific roles of each phenotype of cMV in CVD burden and prognosis still remain to be elucidated and validated in large cohorts. In addition, the development of standardized and reproducible techniques is required to be used as biomarkers for disease progression in the clinical setting. Future Directions: A multipanel approach with specific cMV phenotypes, added to current biomarkers and scores, will undoubtedly provide unique prognostic information to stratify patients for appropriate therapy on the basis of their risk of atherothrombotic disease and will open a new research area as therapeutic targets for CVD. MV will add to the implementation of precision medicine by helping the cellular and molecular characterization of CVD patients.


Assuntos
Biomarcadores , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/metabolismo , Micropartículas Derivadas de Células/metabolismo , Biópsia Líquida , Animais , Doenças Cardiovasculares/sangue , Tomada de Decisão Clínica , Gerenciamento Clínico , Suscetibilidade a Doenças , Humanos , Biópsia Líquida/métodos , Técnicas de Diagnóstico Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA