RESUMO
In this study, a vector flow imaging (VFI) method developed for a portable ultrasound scanner was used for estimating peak velocity values and variation in beam-to-flow angle over the cardiac cycle in vivo on healthy volunteers. Peak-systolic velocity (PSV), end-diastolic velocity (EDV), and resistive index (RI) measured with VFI were compared to spectral Doppler ultrasonography (SDU). Seventeen healthy volunteers were scanned on the left and right common carotid arteries (CCAs). The standard deviation (SD) of VFI measurements averaged over the cardiac cycle was 7.3% for the magnitude and 3.84° for the angle. Bland-Altman plots showed a positive bias for the PSV measured with SDU (mean difference: 0.31 ms -1 ), and Pearson correlation analysis showed a highly significant correlation ( r = 0.6 ; ). A slightly positive bias was found for EDV and RI measured with SDU (mean difference: 0.08 ms -1 and -0.01 ms -1 , respectively). However, the correlation was low and not significant. The beam-to-flow angle was estimated over the systolic part of the cardiac cycle, and its variations were for all measurements larger than the precision of the angle estimation. The range spanned deviations from -25.2° (-6.0 SD) to 23.7° (4.2 SD) with an average deviation from -15.2° to 9.7°. This can significantly affect PSV values measured by SDU as the beam-to-flow angle is not constant and not aligned with the vessel surface. The study demonstrates that the proposed VFI method can be used in vivo for the measurement of PSV in the CCAs, and that angle variations across the cardiac cycle can lead to significant errors in SDU velocity estimates.
Assuntos
Velocidade do Fluxo Sanguíneo/fisiologia , Interpretação de Imagem Assistida por Computador/métodos , Ultrassonografia/métodos , Adulto , Artéria Carótida Primitiva/diagnóstico por imagem , Feminino , Humanos , Masculino , Ultrassonografia Doppler , Adulto JovemRESUMO
A noninvasive method for estimating intravascular pressure changes using 2-D vector velocity is presented. The method was first validated on computational fluid dynamic (CFD) data and with catheter measurements on phantoms. Hereafter, the method was tested in vivo at the carotid bifurcation and at the aortic valve of two healthy volunteers. Ultrasound measurements were performed using the experimental scanner SARUS, in combination with an 8 MHz linear array transducer for experimental scans and a carotid scan, whereas a 3.5-MHz phased array probe was employed for a scan of an aortic valve. Measured 2-D fields of angle-independent vector velocities were obtained using synthetic aperture imaging. Pressure drops from simulated steady flow through six vessel geometries spanning different degrees of diameter narrowing, running from 20%-70%, showed relative biases from 0.35% to 12.06%, depending on the degree of constriction. Phantom measurements were performed on a vessel with the same geometry as the 70% constricted CFD model. The derived pressure drops were compared to pressure drops measured by a clinically used 4F catheter and to a finite-element model. The proposed method showed peak systolic pressure drops of -3 kPa ± 57 Pa, while the catheter and the simulation model showed -5.4 kPa ± 52 Pa and -2.9 kPa, respectively. An in vivo acquisition of 10 s was made at the carotid bifurcation. This produced eight cardiac cycles from where pressure gradients of -227 ± 15 Pa were found. Finally, the aortic valve measurement showed a peak pressure drop of -2.1 kPa over one cardiac cycle. In conclusion, pressure gradients from convective flow changes are detectable using 2-D vector velocity ultrasound.
Assuntos
Velocidade do Fluxo Sanguíneo/fisiologia , Determinação da Pressão Arterial/métodos , Ultrassonografia/métodos , Adulto , Pressão Sanguínea/fisiologia , Artérias Carótidas/diagnóstico por imagem , Artérias Carótidas/fisiologia , Estenose das Carótidas/diagnóstico por imagem , Estenose das Carótidas/fisiopatologia , Humanos , Masculino , Imagens de Fantasmas , Processamento de Sinais Assistido por Computador , Ultrassonografia/instrumentação , Dispositivos de Acesso VascularRESUMO
Several techniques can estimate the 2-D velocity vector in ultrasound. Directional beamforming (DB) estimates blood flow velocities with a higher precision and accuracy than transverse oscillation (TO), but at the cost of a high beamforming load when estimating the flow angle. In this paper, it is proposed to use TO to estimate an initial flow angle, which is then refined in a DB step. Velocity magnitude is estimated along the flow direction using cross correlation. It is shown that the suggested TO-DB method can improve the performance of velocity estimates compared with TO, and with a beamforming load, which is 4.6 times larger than for TO and seven times smaller than for conventional DB. Steered plane wave transmissions are employed for high frame rate imaging, and parabolic flow with a peak velocity of 0.5 m/s is simulated in straight vessels at beam-to-flow angles from 45° to 90°. The TO-DB method estimates the angle with a bias and standard deviation (SD) less than 2°, and the SD of the velocity magnitude is less than 2%. When using only TO, the SD of the angle ranges from 2° to 17° and for the velocity magnitude up to 7%. Bias of the velocity magnitude is within 2% for TO and slightly larger but within 4% for TO-DB. The same trends are observed in measurements although with a slightly larger bias. Simulations of realistic flow in a carotid bifurcation model provide visualization of complex flow, and the spread of velocity magnitude estimates is 7.1 cm/s for TO-DB, while it is 11.8 cm/s using only TO. However, velocities for TO-DB are underestimated at peak systole as indicated by a regression value of 0.97 for TO and 0.85 for TO-DB. An in vivo scanning of the carotid bifurcation is used for vector velocity estimations using TO and TO-DB. The SD of the velocity profile over a cardiac cycle is 4.2% for TO and 3.2% for TO-DB.
Assuntos
Velocidade do Fluxo Sanguíneo/fisiologia , Processamento de Imagem Assistida por Computador/métodos , Ultrassonografia/métodos , Adulto , Artérias Carótidas/diagnóstico por imagem , Simulação por Computador , Análise de Fourier , Humanos , Masculino , Modelos Cardiovasculares , Imagens de FantasmasRESUMO
This paper presents a vector flow imaging method for the integration of quantitative blood flow imaging in portable ultrasound systems. The method combines directional transverse oscillation (TO) and synthetic aperture sequential beamforming to yield continuous velocity estimation in the whole imaging region. Six focused emissions are used to create a high-resolution image (HRI), and a dual-stage beamforming approach is used to lower the data throughput between the probe and the processing unit. The transmit/receive focal points are laterally separated to obtain a TO in the HRI that allows for the velocity estimation along the lateral and axial directions using a phase-shift estimator. The performance of the method was investigated with constant flow measurements in a flow rig system using the SARUS scanner and a 4.1-MHz linear array. A sequence was designed with interleaved B-mode and flow emissions to obtain continuous data acquisition. A parametric study was carried out to evaluate the effect of critical parameters. The vessel was placed at depths from 20 to 40 mm, with beam-to-flow angles of 65°, 75°, and 90°. For the lateral velocities at 20 mm, a bias between -5% and -6.2% was obtained, and the standard deviation (SD) was between 6% and 9.6%. The axial bias was lower than 1% with an SD around 2%. The mean estimated angles were 66.70° ± 2.86°, 72.65° ± 2.48°, and 89.13° ± 0.79° for the three cases. A proof-of-concept demonstration of the real-time processing and wireless transmission was tested in a commercial tablet obtaining a frame rate of 27 frames/s and a data rate of 14 MB/s. An in vivo measurement of a common carotid artery of a healthy volunteer was finally performed to show the potential of the method in a realistic setting. The relative SD averaged over a cardiac cycle was 4.33%.
RESUMO
This paper presents a novel approach for estimating 2-D flow angles using a high-frame-rate ultrasound method. The angle estimator features high accuracy and low standard deviation (SD) over the full 360° range. The method is validated on Field II simulations and phantom measurements using the experimental ultrasound scanner SARUS and a flow rig before being tested in vivo. An 8-MHz linear array transducer is used with defocused beam emissions. In the simulations of a spinning disk phantom, a 360° uniform behavior on the angle estimation is observed with a median angle bias of 1.01° and a median angle SD of 1.8°. Similar results are obtained on a straight vessel for both simulations and measurements, where the obtained angle biases are below 1.5° with SDs around 1°. Estimated velocity magnitudes are also kept under 10% bias and 5% relative SD in both simulations and measurements. An in vivo measurement is performed on a carotid bifurcation of a healthy individual. A 3-s acquisition during three heart cycles is captured. A consistent and repetitive vortex is observed in the carotid bulb during systoles.