Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Mem Inst Oswaldo Cruz ; 110(1): 23-47, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25742262

RESUMO

In the Americas, areas with a high risk of malaria transmission are mainly located in the Amazon Forest, which extends across nine countries. One keystone step to understanding the Plasmodium life cycle in Anopheles species from the Amazon Region is to obtain experimentally infected mosquito vectors. Several attempts to colonise Anopheles species have been conducted, but with only short-lived success or no success at all. In this review, we review the literature on malaria transmission from the perspective of its Amazon vectors. Currently, it is possible to develop experimental Plasmodium vivax infection of the colonised and field-captured vectors in laboratories located close to Amazonian endemic areas. We are also reviewing studies related to the immune response to P. vivax infection of Anopheles aquasalis, a coastal mosquito species. Finally, we discuss the importance of the modulation of Plasmodium infection by the vector microbiota and also consider the anopheline genomes. The establishment of experimental mosquito infections with Plasmodium falciparum, Plasmodium yoelii and Plasmodium berghei parasites that could provide interesting models for studying malaria in the Amazonian scenario is important. Understanding the molecular mechanisms involved in the development of the parasites in New World vectors is crucial in order to better determine the interaction process and vectorial competence.


Assuntos
Anopheles/parasitologia , Insetos Vetores/parasitologia , Malária/transmissão , Plasmodium/classificação , Animais , Anopheles/classificação , Anopheles/genética , Anopheles/imunologia , Anopheles/ultraestrutura , Modelos Animais de Doenças , Insetos Vetores/classificação , Insetos Vetores/genética , Insetos Vetores/imunologia , Insetos Vetores/ultraestrutura , Malária/imunologia , Controle de Mosquitos , Carga Parasitária , Floresta Úmida
2.
Mem Inst Oswaldo Cruz ; 109(5): 672-84, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25185007

RESUMO

Anophelines harbour a diverse microbial consortium that may represent an extended gene pool for the host. The proposed effects of the insect microbiota span physiological, metabolic and immune processes. Here we synthesise how current metagenomic tools combined with classical culture-dependent techniques provide new insights in the elucidation of the role of the Anopheles-associated microbiota. Many proposed malaria control strategies have been based upon the immunomodulating effects that the bacterial components of the microbiota appear to exert and their ability to express anti-Plasmodium peptides. The number of identified bacterial taxa has increased in the current "omics" era and the available data are mostly scattered or in "tables" that are difficult to exploit. Published microbiota reports for multiple anopheline species were compiled in an Excel® spreadsheet. We then filtered the microbiota data using a continent-oriented criterion and generated a visual correlation showing the exclusive and shared bacterial genera among four continents. The data suggested the existence of a core group of bacteria associated in a stable manner with their anopheline hosts. However, the lack of data from Neotropical vectors may reduce the possibility of defining the core microbiota and understanding the mosquito-bacteria interactive consortium.


Assuntos
Anopheles/genética , Anopheles/microbiologia , Insetos Vetores/genética , Metagenômica , Microbiota , Animais , Geografia Médica , Microbiota/genética , Filogenia
3.
Microbiome ; 9(1): 36, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33522965

RESUMO

In the past decade, there has been increasing interest in mosquito microbiome research, leading to large amounts of data on different mosquito species, with various underlying physiological characteristics, and from diverse geographical locations. However, guidelines and standardized methods for conducting mosquito microbiome research are lacking. To streamline methods in mosquito microbiome research and optimize data quality, reproducibility, and comparability, as well as facilitate data curation in a centralized location, we are establishing the Mosquito Microbiome Consortium, a collaborative initiative for the advancement of mosquito microbiome research. Our overall goal is to collectively work on unraveling the role of the mosquito microbiome in mosquito biology, while critically evaluating its potential for mosquito-borne disease control. This perspective serves to introduce the consortium and invite broader participation. It highlights the issues we view as most pressing to the community and proposes guidelines for conducting mosquito microbiome research. We focus on four broad areas in this piece: (1) sampling/experimental design for field, semi-field, or laboratory studies; (2) metadata collection; (3) sample processing, sequencing, and use of appropriate controls; and (4) data handling and analysis. We finally summarize current challenges and highlight future directions in mosquito microbiome research. We hope that this piece will spark discussions around this area of disease vector biology, as well as encourage careful considerations in the design and implementation of mosquito microbiome research. Video Abstract.


Assuntos
Culicidae/microbiologia , Metagenômica , Microbiota , Pesquisa/organização & administração , Pesquisa/tendências , Animais , Reprodutibilidade dos Testes
4.
Mem. Inst. Oswaldo Cruz ; 110(1): 23-47, 03/02/2015. graf
Artigo em Inglês | LILACS | ID: lil-741609

RESUMO

In the Americas, areas with a high risk of malaria transmission are mainly located in the Amazon Forest, which extends across nine countries. One keystone step to understanding the Plasmodium life cycle in Anopheles species from the Amazon Region is to obtain experimentally infected mosquito vectors. Several attempts to colonise Ano- pheles species have been conducted, but with only short-lived success or no success at all. In this review, we review the literature on malaria transmission from the perspective of its Amazon vectors. Currently, it is possible to develop experimental Plasmodium vivax infection of the colonised and field-captured vectors in laboratories located close to Amazonian endemic areas. We are also reviewing studies related to the immune response to P. vivax infection of Anopheles aquasalis, a coastal mosquito species. Finally, we discuss the importance of the modulation of Plasmodium infection by the vector microbiota and also consider the anopheline genomes. The establishment of experimental mosquito infections with Plasmodium falciparum, Plasmodium yoelii and Plasmodium berghei parasites that could provide interesting models for studying malaria in the Amazonian scenario is important. Understanding the molecular mechanisms involved in the development of the parasites in New World vectors is crucial in order to better determine the interaction process and vectorial competence.


Assuntos
Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Amoxicilina/administração & dosagem , Antibacterianos/administração & dosagem , Medicamentos de Ervas Chinesas/administração & dosagem , Infecções por Helicobacter/tratamento farmacológico , Helicobacter pylori/efeitos dos fármacos , Omeprazol/análogos & derivados , Úlcera Péptica/tratamento farmacológico , Antiulcerosos/administração & dosagem , Claritromicina/administração & dosagem , Método Duplo-Cego , Quimioterapia Combinada , Seguimentos , Infecções por Helicobacter/patologia , Lansoprazol , Omeprazol/administração & dosagem , Estudos Prospectivos , Úlcera Péptica/microbiologia , Úlcera Péptica/patologia , Recidiva , Cicatrização/efeitos dos fármacos
5.
Mem. Inst. Oswaldo Cruz ; 109(5): 672-684, 19/08/2014. tab, graf
Artigo em Inglês | LILACS | ID: lil-720419

RESUMO

Anophelines harbour a diverse microbial consortium that may represent an extended gene pool for the host. The proposed effects of the insect microbiota span physiological, metabolic and immune processes. Here we synthesise how current metagenomic tools combined with classical culture-dependent techniques provide new insights in the elucidation of the role of the Anopheles-associated microbiota. Many proposed malaria control strategies have been based upon the immunomodulating effects that the bacterial components of the microbiota appear to exert and their ability to express anti-Plasmodium peptides. The number of identified bacterial taxa has increased in the current “omics” era and the available data are mostly scattered or in “tables” that are difficult to exploit. Published microbiota reports for multiple anopheline species were compiled in an Excel® spreadsheet. We then filtered the microbiota data using a continent-oriented criterion and generated a visual correlation showing the exclusive and shared bacterial genera among four continents. The data suggested the existence of a core group of bacteria associated in a stable manner with their anopheline hosts. However, the lack of data from Neotropical vectors may reduce the possibility of defining the core microbiota and understanding the mosquito-bacteria interactive consortium.


Assuntos
Animais , Anopheles/genética , Anopheles/microbiologia , Insetos Vetores/genética , Metagenômica , Microbiota , Geografia Médica , Microbiota/genética , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA