Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Res ; 241: 117663, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37980981

RESUMO

Given the challenges of urbanization and rapid resource depletion, policymakers have been compelled to abandon the old sequential paradigm of "take-make-use-dispose" to a circular approach that prioritizes preservation of natural resources. The circular economy represents a sustainable management concept that focuses on reducing, recovering, reusing, and recycling waste. While significant strides have been made in implementing circular economy principles in various industries such as automotive, electronics, and construction, particular attention has been given to the water and wastewater domains due to imbalances in water resources. Here we review the global progress of circular economy adoptability in the water and wastewater domains, considering technical, environmental, economic, and social perspectives. It assesses the current state of circular economy integration in the wastewater domain worldwide and presents approaches to promote and accelerate its adoption. The study critically examines the principles of waste management, known as the 6Rs (reclaim, restore, recycle, reduce, recover, reuse), in order to formulate effective strategies for integrating circular economy practices in the water and wastewater domains. Additionally, the study provides an overview of existing research conducted on different aspects of circular economy. Finally, the study analyzes the challenges and opportunities associated with implementing circular economy principles in the water sector.


Assuntos
Gerenciamento de Resíduos , Águas Residuárias , Água , Reciclagem , Recursos Hídricos
2.
Environ Res ; 241: 117549, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37931737

RESUMO

Since ecosystems are becoming inherently polluted, long-term contaminant removal methods are required. Electrodeionization, in particular, has recently been demonstrated as an effective approach for eliminating ionic compounds from contaminated water sources. Being a more environmentally friendly technology is most likely the main reason for its eminence. It uses electricity to replace toxic contaminants that are conventionally used to regenerate and hence reducing the toxins associated with resin regeneration. In wastewater treatment, continuous electrodeionization system overcomes several limitations of ion exchange resins, notably ion dumping. This prospective assessment delves into the mechanism, principle, and theory of electrodeionization system. It also focused on the design and applications, particularly in the removal of toxic compounds, as well as current advances in the electrodeionization system. Recent breakthroughs in electrodeionization were comprehensively discussed. Further developments in electrodeionization systems are also projected, with improved efficiency at the time of functioning at lower costs because of reduced energy use, proving them desirable for commercial usage with a broad array of applications across the globe.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Purificação da Água , Ecossistema , Estudos Prospectivos , Íons , Água
3.
Chemosphere ; 301: 134635, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35447212

RESUMO

Water is a valuable natural resource, which plays a crucial role in ecological survival as well as economic progress. However, the water quality has deteriorated in recent years as a result of urbanization, industrialization and human activities due to the uncontrolled release of industrial wastes, which can be extremely carcinogenic and non-degradable, in air, water and soil bodies. Such wastes showed the presence of organic and inorganic pollutants in high dosages. Heavy metals are the most obstinate contaminants, and they can be harmful because of having a variety of detrimental consequences to the ecosystem. The existing water treatment methods in many situations may not be sustainable or effective because of their high energy requirements and ecological impacts. In this review, state-of-the-art water treatment methods for the elimination of heavy metals with the help of protein nanofibrils are covered featuring a discussion on the strategies and possibilities of developing protein nanofibrils for the active elimination of heavy metals using kitchen waste as well as residues from the cattle, agriculture, and dairy industries. Further, the emphasis has been given to their environmental sustainability and economical aspects are also discussed.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Purificação da Água , Adsorção , Animais , Bovinos , Ecossistema , Metais Pesados/análise , Águas Residuárias/química , Poluentes Químicos da Água/química , Purificação da Água/métodos
4.
Chemosphere ; 300: 134597, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35439481

RESUMO

Over the previous three decades, the worldwide use of pharmaceuticals has surged by more than 2.5 times. Although being considered essential to save many lives, pharmaceuticals have also emerged as a large source of complex environmental contaminants in recent decades. Consequently, the pharmaceuticals and their breakdown products are ending up into the water bodies thus progressively contaminating them and the surrounding environments. Based on recent studies concentrations in water sources are typically >0.1 µg/l and the concentration in treated water is typically >0.05 µg/l. These pharma drugs are removed from aquatic systems by processes such as oxidation, Ultraviolet degradation, reverse osmosis and nano-filtration. However, hazardous sludge creation, incomplete removal, expensive capital and operating costs, and the need for professional operating and maintenance personnel have all limited the economic sustainability of these systems. As a result, the presence of pharmaceuticals in water necessitates even more advanced technologies of purification to harvest clean water, yet present approaches are constrained by their high costs, low reusability, and disposal issues. Here, we review sustainable adsorbents for the removal of pharmaceuticals from wastewater. In this comprehensive review, an evaluation of water contamination caused by pharmaceutical compounds is discussed. An overview of current research on the employment of sustainable adsorbents for the removal of the major pharmaceuticals prevalent in water sources. Numerous aspects of high adsorption efficiencies of these pharmaceutical compounds with such sustainable adsorbents were observed; however, other factors, such as adsorbent regeneration and cost evaluation, must be taken into account in order to assess the true applicability of adsorbents.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Adsorção , Preparações Farmacêuticas , Águas Residuárias/análise , Água , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA