Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Sensors (Basel) ; 19(21)2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31671620

RESUMO

Barkhausen noise testing (BNT) is a nondestructive method for investigating many properties of ferromagnetic materials. The most common application is the monitoring of grinding burns caused by introducing locally high temperatures while grinding. Other features, such as microstructure, residual stress changes, hardening depth, and so forth, can be monitored as well. Nevertheless, because BNT is a method based on a complex magnetoelectric phenomenon, it is not yet standardized. Therefore, there is a need to study the traceability and stability of the measurement method. This study aimed to carry out a statistical analysis of ferromagnetic samples after grinding processes by the use of BNT. The first part of the experiment was to grind samples in different facilities (Sweden and Finland) with similar grinding parameters, different grinding wheels, and different hardness values. The second part was to evaluate measured BNT parameters to determine significant factors affecting BNT signal value. The measurement data from the samples were divided into two different batches according to where they were manufactured. Both grinding batches contained measurement data from three different participants. The main feature for calculation was the root-mean-square (RMS) value. The first processing step was to normalize the RMS values for all the measurements. A standard analysis of variance (ANOVA) was applied for the normalized dataset. The ANOVA showed that the grinding parameters had a significant impact on the BNT signal value, while the other investigated factors (e.g., participant) were negligible. The reasons for this are discussed at the end of the paper.

2.
Part Fibre Toxicol ; 11: 38, 2014 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-25123235

RESUMO

BACKGROUND: Metal oxide nanoparticles such as ZnO are used in sunscreens as they improve their optical properties against the UV-light that causes dermal damage and skin cancer. However, the hazardous properties of the particles used as UV-filters in the sunscreens and applied to the skin have remained uncharacterized. METHODS: Here we investigated whether different sized ZnO particles would be able to penetrate injured skin and injured allergic skin in the mouse atopic dermatitis model after repeated topical application of ZnO particles. Nano-sized ZnO (nZnO) and bulk-sized ZnO (bZnO) were applied to mechanically damaged mouse skin with or without allergen/superantigen sensitization. Allergen/superantigen sensitization evokes local inflammation and allergy in the skin and is used as a disease model of atopic dermatitis (AD). RESULTS: Our results demonstrate that only nZnO is able to reach into the deep layers of the allergic skin whereas bZnO stays in the upper layers of both damaged and allergic skin. In addition, both types of particles diminish the local skin inflammation induced in the mouse model of AD; however, nZnO has a higher potential to suppress the local effects. In addition, especially nZnO induces systemic production of IgE antibodies, evidence of allergy promoting adjuvant properties for topically applied nZnO. CONCLUSIONS: These results provide new hazard characterization data about the metal oxide nanoparticles commonly used in cosmetic products and provide new insights into the dermal exposure and hazard assessment of these materials in injured skin.


Assuntos
Alérgenos , Antialérgicos/toxicidade , Dermatite Atópica/induzido quimicamente , Dermatite Atópica/prevenção & controle , Imunoglobulina E/sangue , Nanopartículas Metálicas/toxicidade , Pele/efeitos dos fármacos , Óxido de Zinco/toxicidade , Administração Cutânea , Animais , Antialérgicos/administração & dosagem , Biomarcadores/sangue , Citocinas/genética , Citocinas/metabolismo , Dermatite Atópica/sangue , Dermatite Atópica/genética , Dermatite Atópica/imunologia , Modelos Animais de Doenças , Regulação para Baixo , Enterotoxinas , Feminino , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Nanopartículas Metálicas/administração & dosagem , Camundongos Endogâmicos BALB C , Ovalbumina , RNA Mensageiro/metabolismo , Medição de Risco , Pele/imunologia , Pele/lesões , Protetores Solares/administração & dosagem , Protetores Solares/toxicidade , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Óxido de Zinco/administração & dosagem
3.
Part Fibre Toxicol ; 11: 4, 2014 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-24438343

RESUMO

BACKGROUND: Certain multi-walled carbon nanotubes (MWCNTs) have been shown to elicit asbestos-like toxicological effects. To reduce needs for risk assessment it has been suggested that the physicochemical characteristics or reactivity of nanomaterials could be used to predict their hazard. Fibre-shape and ability to generate reactive oxygen species (ROS) are important indicators of high hazard materials. Asbestos is a known ROS generator, while MWCNTs may either produce or scavenge ROS. However, certain biomolecules, such as albumin - used as dispersants in nanomaterial preparation for toxicological testing in vivo and in vitro - may reduce the surface reactivity of nanomaterials. METHODS: Here, we investigated the effect of bovine serum albumin (BSA) and cell culture medium with and without BEAS 2B cells on radical formation/scavenging by five MWCNTs, Printex 90 carbon black, crocidolite asbestos, and glass wool, using electron spin resonance (ESR) spectroscopy and linked this to cytotoxic effects measured by trypan blue exclusion assay. In addition, the materials were characterized in the exposure medium (e.g. for hydrodynamic size-distribution and sedimentation rate). RESULTS: The test materials induced highly variable cytotoxic effects which could generally be related to the abundance and characteristics of agglomerates/aggregates and to the rate of sedimentation. All carbon nanomaterials were found to scavenge hydroxyl radicals (•OH) in at least one of the solutions tested. The effect of BSA was different among the materials. Two types of long, needle-like MWCNTs (average diameter >74 and 64.2 nm, average length 5.7 and 4.0 µm, respectively) induced, in addition to a scavenging effect, a dose-dependent formation of a unique, yet unidentified radical in both absence and presence of cells, which also coincided with cytotoxicity. CONCLUSIONS: Culture medium and BSA affects scavenging/production of •OH by MWCNTs, Printex 90 carbon black, asbestos and glass-wool. An unidentified radical is generated by two long, needle-like MWCNTs and these two CNTs were more cytotoxic than the other CNTs tested, suggesting that this radical could be related to the adverse effects of MWCNTs.


Assuntos
Células Epiteliais/metabolismo , Sequestradores de Radicais Livres/metabolismo , Radicais Livres/metabolismo , Nanotubos de Carbono , Asbesto Crocidolita/farmacologia , Brônquios/citologia , Brônquios/efeitos dos fármacos , Brônquios/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Sistema Livre de Células , Meios de Cultura , Relação Dose-Resposta a Droga , Espectroscopia de Ressonância de Spin Eletrônica , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/ultraestrutura , Vidro , Humanos , Luz , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Espalhamento de Radiação , Soroalbumina Bovina/farmacologia , Fuligem/toxicidade
4.
Part Fibre Toxicol ; 11: 48, 2014 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-25318534

RESUMO

BACKGROUND: Carbon nanotubes (CNT) represent a great promise for technological and industrial development but serious concerns on their health effects have also emerged. Rod-shaped CNT are, in fact, able to induce asbestos-like pathogenicity in mice including granuloma formation in abdominal cavity and sub-pleural fibrosis. Exposure to CNT, especially in the occupational context, happens mainly by inhalation. However, little is known about the possible effects of CNT on pulmonary allergic diseases, such as asthma. METHODS: We exposed mice by inhalation to two types of multi-walled CNT, rigid rod-like and flexible tangled CNT, for four hours a day once or on four consecutive days. Early events were monitored immediately and 24 hours after the single inhalation exposure and the four day exposure mimicked an occupational work week. Mast cell deficient mice were used to evaluate the role of mast cells in the occurring inflammation. RESULTS: Here we show that even a short-term inhalation of the rod-like CNT induces novel innate immunity-mediated allergic-like airway inflammation in healthy mice. Marked eosinophilia was accompanied by mucus hypersecretion, AHR and the expression of Th2-type cytokines. Exploration of the early events by transcriptomics analysis reveals that a single 4-h exposure to rod-shaped CNT, but not to tangled CNT, causes a radical up-regulation of genes involved in innate immunity and cytokine/chemokine pathways. Mast cells were found to partially regulate the inflammation caused by rod-like CNT, but also alveaolar macrophages play an important role in the early stages. CONCLUSIONS: These observations emphasize the diverse abilities of CNT to impact the immune system, and they should be taken into account for hazard assessment.


Assuntos
Poluentes Atmosféricos/toxicidade , Exposição por Inalação/efeitos adversos , Nanotubos de Carbono/toxicidade , Pneumonia/induzido quimicamente , Hipersensibilidade Respiratória/etiologia , Mucosa Respiratória/efeitos dos fármacos , Sistema Respiratório/efeitos dos fármacos , Aerossóis , Poluentes Atmosféricos/química , Animais , Citocinas/agonistas , Citocinas/genética , Citocinas/metabolismo , Eosinofilia/etiologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Imunidade Inata/efeitos dos fármacos , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/patologia , Mastócitos/efeitos dos fármacos , Mastócitos/imunologia , Mastócitos/metabolismo , Mastócitos/patologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestrutura , Pneumonia/imunologia , Pneumonia/metabolismo , Pneumonia/fisiopatologia , Hipersensibilidade Respiratória/imunologia , Hipersensibilidade Respiratória/metabolismo , Hipersensibilidade Respiratória/fisiopatologia , Mucosa Respiratória/imunologia , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia , Sistema Respiratório/imunologia , Sistema Respiratório/metabolismo , Sistema Respiratório/patologia , Fatores de Tempo
5.
J Appl Toxicol ; 34(11): 1167-76, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24531921

RESUMO

Although carbon-based nanomaterials (CBNs) have been shown to exert prothrombotic effects in microvessels, it is poorly understood whether CBNs also have the potential to interfere with the process of leukocyte-endothelial cell interactions and whether the shape of CBNs plays a role in these processes. Thus, the aim of this study was to compare the acute effects of two differently shaped CBNs, fiber-shaped single-walled carbon nanotubes (SWCNT) and spherical ultrafine carbon black (CB), on thrombus formation as well as on leukocyte-endothelial cell interactions and leukocyte transmigration in the murine microcirculation upon systemic administration in vivo. Systemic administration of both SWCNT and CB accelerated arteriolar thrombus formation at a dose of 1 mg kg(-1) body weight, whereas SWCNT exerted a prothrombotic effect also at a lower dose (0.1 mg kg(-1) body weight). In vitro, both CBNs induced P-selectin expression on human platelets and formation of platelet-granulocyte complexes. In contrast, injection of fiber-shaped SWCNT or of spherical CB did not induce leukocyte-endothelial cell interactions or leukocyte transmigration. In vitro, both CBNs slightly increased the expression of activation markers on human monocytes and granulocytes. These findings suggest that systemic administration of CBNs accelerates arteriolar thrombus formation independently of the CBNs' shape, but does not induce leukocyte-endothelial cell interactions or leukocyte transmigration.


Assuntos
Microcirculação/efeitos dos fármacos , Nanotubos de Carbono/toxicidade , Fuligem/toxicidade , Animais , Arteríolas/efeitos dos fármacos , Arteríolas/patologia , Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Humanos , Leucócitos/citologia , Leucócitos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Varredura , Selectina-P/genética , Selectina-P/metabolismo , Trombose/induzido quimicamente
6.
Ultramicroscopy ; 262: 113979, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38703575

RESUMO

We built a custom-made holder with a Hall-effect sensor to measure the single point magnetic flux density inside a transmission electron microscope (TEM, JEM-F200, JEOL). The measurement point is at the same place as the sample inside the TEM. We utilized information collected with the Hall-effect sensor holder to study magnetic domain wall (DW) dynamics by in-situ Lorentz microscopy. We generated an external magnetic field to the sample using the objective lens (OL) of the TEM. Based on our measurements with the Hall-effect sensor holder, the OL has nearly linear response, and when it is switched off, the strength of the magnetic field in the sample region is very close to 0 mT. A ferritic-pearlitic sample studied has globular and lamellar cementite (Fe3C) carbides in the ferrite matrix. Based on the in-situ Lorentz microscopy experiments, DWs in the ferritic matrix perpendicular to the lamellar carbides start to move first at ∼10 mT. At 160 mT, DWs inside the globular carbide start to disappear, and the saturation occurs at ∼210 mT. At 288 mT, the DWs parallel to the lamellar carbides still exist. Thus, these lamellar carbides are very strong pinning sites for DWs. We also run dynamical micromagnetic simulations to reproduce the DW disappearance in the globular carbide. As in the in-situ experiments, the DWs stay stable until the external field reaches the magnitude of 160 mT, and the DWs disappear before the field is 214 mT. In general, the micromagnetic simulations supported very well the interpretation of the experimental findings.

7.
Mol Biol Cell ; 34(9): br13, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37342871

RESUMO

Investigation of nuclear lamina architecture relies on superresolved microscopy. However, epitope accessibility, labeling density, and detection precision of individual molecules pose challenges within the molecularly crowded nucleus. We developed iterative indirect immunofluorescence (IT-IF) staining approach combined with expansion microscopy (ExM) and structured illumination microscopy to improve superresolution microscopy of subnuclear nanostructures like lamins. We prove that ExM is applicable in analyzing highly compacted nuclear multiprotein complexes such as viral capsids and provide technical improvements to ExM method including three-dimensional-printed gel casting equipment. We show that in comparison with conventional immunostaining, IT-IF results in a higher signal-to-background ratio and a mean fluorescence intensity by improving the labeling density. Moreover, we present a signal-processing pipeline for noise estimation, denoising, and deblurring to aid in quantitative image analyses and provide this platform for the microscopy imaging community. Finally, we show the potential of signal-resolved IT-IF in quantitative superresolution ExM imaging of nuclear lamina and reveal nanoscopic details of the lamin network organization-a prerequisite for studying intranuclear structural coregulation of cell function and fate.


Assuntos
Microscopia , Lâmina Nuclear , Microscopia/métodos , Núcleo Celular , Laminas , Processamento de Imagem Assistida por Computador
8.
Materials (Basel) ; 16(1)2022 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-36614498

RESUMO

Barkhausen noise (BN) measurements are commonly used for surface characterisation. However, often there is also a need to verify the sub-surface region because detrimental tensile stresses may be present after different manufacturing steps. Especially in a grinding burn, the surface stress may be compressive, but it changes quickly into tensile stress below the surface. The aim of this study was to find out whether regular surface-sensitive BN measurement is also sensitive to the stresses below the surface caused by grinding burns. More specifically, the aim was to study the relationship between BN features and sub-surface stresses and to identify a model that estimates sub-surface stresses. Real samples were collected from an actual process. The samples were cylindrical samples manufactured from commercial alloyed AISI/SAE L6 steel that was through-hardened prior to grinding. Barkhausen noise measurements were carried out for 42 grinding burn locations followed by X-ray diffraction-based residual stress surface measurements and residual stress depth profiles. Depth information was obtained through step-by-step electrolytic removal of thin layers. The stress profiles were pre-processed through interpolation and averaged stress was calculated as a function of depth below the surface. Correlation analysis was carried out to evaluate the relationships between BN features and stress at different depths and among BN features. The main outcome of the analysis was that BN measurement is dominated by the sub-surface tensile stresses rather than the compressive stress at the surface. It was also noticed that BN features form two groups, corresponding to average Barkhausen activity and magnetising field strength leading to maximum Barkhausen activity. Models for stress at different steps were identified systematically. The performance of the models for sub-surface stresses was reasonable with R2 values of around 0.85 and root mean squared error (RMSE) values of around 95 MPa. Based on the results, it is concluded that BN measurement provides information about sub-surface stresses and that stress can be evaluated through straightforward modelling, allowing fast detection of grinding burns.

9.
Materials (Basel) ; 15(10)2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35629543

RESUMO

Severe shot peening (SSP) was used on additive manufactured 316L by laser powder bed fusion. The effect of the post processing on the surface features of the material was analyzed through residual stress measurements, tensile testing, hardness-depth profiles, and fatigue testing by flexural bending. The results showed that SSP can be utilized to form residual stresses up to -400 MPa 200 µm below the surface. At the same time, a clear improvement on the surface hardness was achieved from 275 HV to near 650 HV. These together resulted in a clear improvement on material strength which was recorded at 10% improvement in ultimate tensile strength. Most significantly, the fatigue limit of the material was tripled from 200 MPa to over 600 MPa and the overall fatigue strength raised similarly from a low to high cycle regime.

10.
Materials (Basel) ; 14(18)2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34576490

RESUMO

Utilization is a sustainable and interesting alternative for the destructive treatment of volatile organic compounds due to avoided CO2 emission. This work concentrates on the development of active and sulfur-tolerant catalysts for the utilization of contaminated methanol. Impregnated and sol-gel prepared vanadia-zirconia and vanadia-hafnia catalysts were thoroughly characterized by N2 sorption, analytical (S)TEM, elemental analysis, XRD and Raman spectroscopy, and their performances were evaluated in formaldehyde production from methanol and methanethiol mixture. The results showed higher activity of the sol-gel prepared catalysts due to formation of mono- and polymeric vanadia species. Unfortunately, the most active vanadia sites were deactivated more easily than the metal-mixed oxide HfV2O7 and ZrV2O7 phases, as well as crystalline V2O5 observed in the impregnated catalysts. Metal-mixed oxide phases were formed in impregnated catalysts through formation of defects in HfO2 and ZrO2 structure during calcination at 600 °C, which was evidenced by Raman spectroscopy. The sol-gel prepared vanadia-zirconia and vanadia-hafnia catalysts were able to produce formaldehyde from contaminated methanol with high selectivity at temperature around 400 °C, while impregnated catalysts required 50-100 °C higher temperatures.

11.
Environ Toxicol Pharmacol ; 74: 103303, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31794919

RESUMO

Exposure to metal oxide nanomaterials potentially occurs at the workplace. We investigated the toxicity of two Fe-oxides: Fe2O3 nanoparticles and nanorods; and three MFe2O4 spinels: NiZnFe4O8, ZnFe2O4, and NiFe2O4 nanoparticles. Mice were dosed 14, 43 or 128 µg by intratracheal instillation. Recovery periods were 1, 3, or 28 days. Inflammation - neutrophil influx into bronchoalveolar lavage (BAL) fluid - occurred for Fe2O3 rods (1 day), ZnFe2O4 (1, 3 days), NiFe2O4 (1, 3, 28 days), Fe2O3 (28 days) and NiZnFe4O8 (28 days). Conversion of mass-dose into specific surface-area-dose showed that inflammation correlated with deposited surface area and consequently, all these nanomaterials belong to the so-called low-solubility, low-toxicity class. Increased levels of DNA strand breaks were observed for both Fe2O3 particles and rods, in BAL cells three days post-exposure. To our knowledge, this is, besides magnetite (Fe3O4), the first study of the pulmonary toxicity of MFe2O4 spinel nanomaterials.


Assuntos
Pulmão/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Animais , Líquido da Lavagem Broncoalveolar , Dano ao DNA , Camundongos
12.
Toxicol Lett ; 186(3): 166-73, 2009 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-19114091

RESUMO

Despite the increasing industrial use of different nanomaterials, data on their genotoxicity are scant. In the present study, we examined the potential genotoxic effects of carbon nanotubes (CNTs; >50% single-walled, approximately 40% other CNTs; 1.1 nm x 0.5-100 microm; Sigma-Aldrich) and graphite nanofibres (GNFs; 95%; outer diameter 80-200 nm, inner diameter 30-50 nm, length 5-20 microm; Sigma-Aldrich) in vitro. Genotoxicity was assessed by the single cell gel electrophoresis (comet) assay and the micronucleus assay (cytokinesis-block method) in human bronchial epithelial BEAS 2B cells cultured for 24h, 48h, or 72h with various doses (1-100 microg/cm(2), corresponding to 3.8-380 microg/ml) of the carbon nanomaterials. In the comet assay, CNTs induced a dose-dependent increase in DNA damage at all treatment times, with a statistically significant effect starting at the lowest dose tested. GNFs increased DNA damage at all doses in the 24-h treatment, at two doses (40 and 100 microg/cm(2)) in the 48-h treatment (dose-dependent effect) and at four doses (lowest 10 microg/cm(2)) in the 72-h treatment. In the micronucleus assay, no increase in micronucleated cells was observed with either of the nanomaterials after the 24-h treatment or with CNTs after the 72-h treatment. The 48-h treatment caused a significant increase in micronucleated cells at three doses (lowest 10 microg/cm(2)) of CNTs and at two doses (5 and 10 microg/cm(2)) of GNFs. The 72-h treatment with GNFs increased micronucleated cells at four doses (lowest 10 microg/cm(2)). No dose-dependent effects were seen in the micronucleus assay. The presence of carbon nanomaterial on the microscopic slides disturbed the micronucleus analysis and made it impossible at levels higher than 20 microg/cm(2) of GNFs in the 24-h and 48-h treatments. In conclusion, our results suggest that both CNTs and GNFs are genotoxic in human bronchial epithelial BEAS 2B cells in vitro. This activity may be due to the fibrous nature of these carbon nanomaterials with a possible contribution by catalyst metals present in the materials-Co and Mo in CNTs (<5wt.%) and Fe (<3wt.%) in GNFs.


Assuntos
Grafite/toxicidade , Mutagênicos/toxicidade , Nanotubos de Carbono/toxicidade , Linhagem Celular Transformada , Sobrevivência Celular/efeitos dos fármacos , Ensaio Cometa , Dano ao DNA , Grafite/química , Grafite/classificação , Humanos , Micronúcleos com Defeito Cromossômico/induzido quimicamente , Testes para Micronúcleos , Mutagênicos/classificação , Nanotubos de Carbono/classificação , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/patologia
13.
Laryngoscope ; 129(1): 18-24, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30151913

RESUMO

OBJECTIVES/HYPOTHESIS: The aim of this study was to evaluate statistically the effects of radiofrequency ablation, diode laser, and microdebrider-assisted inferior turbinoplasty techniques on ciliated epithelium and mucociliary function. STUDY DESIGN: Prospective randomized study. METHODS: A total of 66 consecutively randomized adult patients with enlarged inferior turbinates underwent either a radiofrequency ablation, diode laser, or microdebrider-assisted inferior turbinoplasty procedure. Assessments were conducted prior to surgery and 3 months subsequent to the surgery. The effect on ciliated epithelium was evaluated using a score based on the blinded grading of the preoperative and postoperative scanning electron microscopy images of mucosal samples. The effect on mucociliary function, in turn, was evaluated using saccharin transit time measurement. RESULTS: The score of the number of cilia increased statistically significantly in the radiofrequency ablation (P = .03) and microdebrider-assisted inferior turbinoplasty (P = .04) groups, but not in the diode laser group. The score of the squamous metaplasia increased statistically significantly in the diode laser group (P = .002), but not in the other two groups. There were no significant changes found between the preoperative and postoperative saccharin transit time values in any of the treatment groups. CONCLUSIONS: Radiofrequency ablation and microdebrider-assisted inferior turbinoplasty are more mucosal preserving techniques than the diode laser, which was found to increase the amount of squamous metaplasia at the 3-month follow-up. The number of cilia seemed to even increase after radiofrequency ablation and microdebrider-assisted inferior turbinoplasty procedures, but not after diode laser. Nevertheless, the mucociliary transport was equally preserved in all three groups. LEVEL OF EVIDENCE: 1b Laryngoscope, 129:18-24, 2019.


Assuntos
Desbridamento/métodos , Lasers Semicondutores/uso terapêutico , Mucosa Nasal/fisiopatologia , Ablação por Radiofrequência/métodos , Conchas Nasais/cirurgia , Adulto , Idoso , Cílios , Feminino , Humanos , Hipertrofia , Masculino , Microscopia Eletrônica de Varredura , Pessoa de Meia-Idade , Depuração Mucociliar/fisiologia , Mucosa Nasal/diagnóstico por imagem , Mucosa Nasal/cirurgia , Período Pós-Operatório , Estudos Prospectivos , Método Simples-Cego , Resultado do Tratamento , Conchas Nasais/diagnóstico por imagem , Conchas Nasais/patologia , Adulto Jovem
14.
Part Fibre Toxicol ; 5: 14, 2008 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-18990217

RESUMO

BACKGROUND: The aim of this study was to establish and validate a practical method to disperse nanoparticles in physiological solutions for biological in vitro and in vivo studies. RESULTS: TiO2 (rutile) dispersions were prepared in distilled water, PBS, or RPMI 1640 cell culture medium. Different ultrasound energies, various dispersion stabilizers (human, bovine, and mouse serum albumin, Tween 80, and mouse serum), various concentrations of stabilizers, and different sequences of preparation steps were applied. The size distribution of dispersed nanoparticles was analyzed by dynamic light scattering and zeta potential was measured using phase analysis light scattering. Nanoparticle size was also verified by transmission electron microscopy. A specific ultrasound energy of 4.2 x 105 kJ/m3 was sufficient to disaggregate TiO2 (rutile) nanoparticles, whereas higher energy input did not further improve size reduction. The optimal sequence was first to sonicate the nanoparticles in water, then to add dispersion stabilizers, and finally to add buffered salt solution to the dispersion. The formation of coarse TiO2 (rutile) agglomerates in PBS or RPMI was prevented by addition of 1.5 mg/ml of human, bovine or mouse serum albumin, or mouse serum. The required concentration of albumin to stabilize the nanoparticle dispersion depended on the concentration of the nanoparticles in the dispersion. TiO2 (rutile) particle dispersions at a concentration lower than 0.2 mg/ml could be stabilized by the addition of 1.5 mg/ml albumin. TiO2 (rutile) particle dispersions prepared by this method were stable for up to at least 1 week. This method was suitable for preparing dispersions without coarse agglomerates (average diameter < 290 nm) from nanosized TiO2 (rutile), ZnO, Ag, SiOx, SWNT, MWNT, and diesel SRM2975 particulate matter. CONCLUSION: The optimized dispersion method presented here appears to be effective and practicable for preparing dispersions of nanoparticles in physiological solutions without creating coarse agglomerates.

15.
Macromol Biosci ; 17(7)2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28296144

RESUMO

Stem cell transplantations for spinal cord injury (SCI) have been studied extensively for the past decade in order to replace the damaged tissue with human pluripotent stem cell (hPSC)-derived neural cells. Transplanted cells may, however, benefit from supporting and guiding structures or scaffolds in order to remain viable and integrate into the host tissue. Biomaterials can be used as supporting scaffolds, as they mimic the characteristics of the natural cellular environment. In this study, hPSC-derived neurons, astrocytes, and oligodendrocyte precursor cells (OPCs) are cultured on aligned poly(ε-caprolactone) nanofiber platforms, which guide cell orientation to resemble that of spinal cord in vivo. All cell types are shown to efficiently spread over the nanofiber platform and orient according to the fiber alignment. Human neurons and astrocytes require extracellular matrix molecule coating for the nanofibers, but OPCs grow on nanofibers without additional treatment. Furthermore, the nanofiber platform is combined with a 3D hydrogel scaffold with controlled thickness, and nanofiber-mediated orientation of hPSC-derived neurons is also demonstrated in a 3D environment. In this work, clinically relevant materials and substrates for nanofibers, fiber coatings, and hydrogel scaffolds are used and combined with cells suitable for developing functional cell grafts for SCI repair.


Assuntos
Astrócitos/metabolismo , Movimento Celular , Células-Tronco Embrionárias Humanas/metabolismo , Nanofibras/química , Neurônios/metabolismo , Oligodendroglia/metabolismo , Poliésteres/química , Astrócitos/citologia , Células-Tronco Embrionárias Humanas/citologia , Humanos , Neurônios/citologia , Oligodendroglia/citologia
16.
Acta Biomater ; 2(6): 659-68, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16884966

RESUMO

Rat bone marrow stromal cell differentiation on aluminosilicate 3Al(2)O(3)-2SiO(2) coatings was investigated. Thin ceramic coatings were prepared on alpha-alumina substrates by the sol-gel process and calcined in order to establish an amorphous aluminosilicate ceramic phase with and without nanosized transitional mullite crystals. In addition, coatings of thermally sprayed aluminosilicate and diphasic gamma-alumina-silica nanosized colloids were prepared. Cell culture testing by rat osteoblasts showed good biocompatibility for aluminosilicates with sustained normal osteoblast functions. Despite mutual disparities in physical and chemical nanostructures, the culture findings suggested fairly similar osteoblast response to all tested coatings. The results suggest that topographical frequency parameters and chemical uniformity are important parameters in determining the best conditions for osteoblasts on sol-gel derived aluminosilicate materials.


Assuntos
Óxido de Alumínio/química , Silicatos de Alumínio/química , Técnicas de Cultura de Células/métodos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia , Osteoblastos/citologia , Osteoblastos/fisiologia , Animais , Diferenciação Celular , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Materiais Revestidos Biocompatíveis/química , Géis/química , Masculino , Teste de Materiais , Transição de Fase , Ratos , Ratos Sprague-Dawley , Engenharia Tecidual/métodos
17.
Nanoscale Res Lett ; 11(1): 169, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27030469

RESUMO

The aim of this paper is to introduce a new image analysis program "Nanoannotator" particularly developed for analyzing individual nanoparticles in transmission electron microscopy images. This paper describes the usefulness and efficiency of the program when analyzing nanoparticles, and at the same time, we compare it to more conventional nanoparticle analysis techniques. The techniques which we are concentrating here are transmission electron microscopy (TEM) linked with different image analysis methods and X-ray diffraction techniques. The developed program appeared as a good supplement to the field of particle analysis techniques, since the traditional image analysis programs suffer from the inability to separate the individual particles from agglomerates in the TEM images. The program is more efficient, and it offers more detailed morphological information of the particles than the manual technique. However, particle shapes that are very different from spherical proved to be problematic also for the novel program. When compared to X-ray techniques, the main advantage of the small-angle X-ray scattering (SAXS) method is the average data it provides from a very large amount of particles. However, the SAXS method does not provide any data about the shape or appearance of the sample.

18.
Artigo em Inglês | MEDLINE | ID: mdl-27402478

RESUMO

Data available on the genotoxicity of zinc oxide (ZnO) nanoparticles (NPs) are controversial. Here, we examined the effects of particle size and dispersion status on the cytotoxicity and genotoxicity of nanosized and fine ZnO, in the presence and absence of bovine serum albumin (BSA; 0.06%) in human bronchial epithelial BEAS-2B cells. Dynamic light scattering analysis showed the most homogenous dispersions in water alone for nanosized ZnO and in water with BSA for fine ZnO. After a 48-h treatment, both types of ZnO were cytotoxic within a similar, narrow dose range (1.5-3.0µg/cm(2)) and induced micronuclei at a near toxic dose range (1.25-1.75µg/cm(2)), both with and without BSA. In the comet assay, nanosized ZnO (1.25-1.5µg/cm(2)), in the absence of BSA, caused a statistically significant increase in DNA damage after 3-h and 6-h treatments, while fine ZnO did not. Our findings may be explained by better uptake or faster intracellular dissolution of nanosized ZnO without BSA during short treatments (3-6h; the comet assay), with less differences between the two ZnO forms after longer treatments (>48h; the in vitro micronucleus test). As ZnO is genotoxic within a narrow dose range partly overlapping with cytotoxic doses, small experimental differences e.g. in the dispersion of ZnO particles may have a substantial effect on the genotoxicity of the nominal doses added to the cell culture.


Assuntos
Brônquios/citologia , Células Epiteliais/efeitos dos fármacos , Nanopartículas Metálicas/química , Óxido de Zinco/toxicidade , Animais , Bovinos , Linhagem Celular , Ensaio Cometa , Dano ao DNA/efeitos dos fármacos , Humanos , Testes para Micronúcleos , Tamanho da Partícula , Soroalbumina Bovina/química
19.
Bioresour Technol ; 212: 236-244, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27107340

RESUMO

The progress of the conversion, the yield, the structure and the morphology of the produced carbonaceous materials as a function of time were systematically studied with pyrolysis-GC/FID and FESEM microscope. The conversion of galactoglucomannan, bleached kraft pulp and TEMPO oxidized cellulose nanofibrils followed the reaction route of glucose being slower though with fibrous material, higher molar mass and viscosity. The conversion of kraft lignin was minor following completely different reaction route. Carbonaceous particles of different shape and size were produced with yields between 23% and 73% after 4h with being higher for lignin than carbohydrates. According to the results, potential pulp mill streams represent lignocellulosic resources for generation of carbonaceous materials.


Assuntos
Carbono/química , Lignina/química , Biomassa , Carboidratos , Microscopia Eletrônica de Varredura , Rios/química , Temperatura , Gerenciamento de Resíduos/métodos
20.
Toxicol In Vitro ; 29(5): 1132-9, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25956790

RESUMO

Surface modification of single-walled carbon nanotubes (SWCNTs) such as carboxylation, amidation, hydroxylation and pegylation is used to reduce the nanotube toxicity and render them more suitable for biomedical applications than their pristine counterparts. Toxicity can be manifested in platelet activation as it has been shown for SWCNTs. However, the effect of various surface modifications on the platelet activating potential of SWCNTs has not been tested yet. In vitro platelet activation (CD62P) as well as the platelet-granulocyte complex formation (CD15/CD41 double positivity) in human whole blood were measured by flow cytometry in the presence of 0.1mg/ml of pristine or various surface modified SWCNTs. The effect of various SWCNTs was tested by whole blood impedance aggregometry, too. All tested SWCNTs but the hydroxylated ones activate platelets and promote platelet-granulocyte complex formation in vitro. Carboxylated, pegylated and pristine SWCNTs induce whole blood aggregation as well. Although pegylation is preferred from biomedical point of view, among the samples tested by us pegylated SWCNTs induced far the most prominent activation and a well detectable aggregation of platelets in whole blood.


Assuntos
Plaquetas/efeitos dos fármacos , Granulócitos/efeitos dos fármacos , Nanotubos de Carbono/química , Nanotubos de Carbono/toxicidade , Plaquetas/fisiologia , Citometria de Fluxo , Granulócitos/fisiologia , Humanos , Ativação Plaquetária/efeitos dos fármacos , Agregação Plaquetária/efeitos dos fármacos , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA