RESUMO
The coevolution of liquid chromatography (LC) with mass spectrometry (MS) has shaped contemporary proteomics. LC hyphenated to MS now enables quantification of more than 10,000 proteins in a single injection, a number that likely represents most proteins in specific human cells or tissues. Separations by ion mobility spectrometry (IMS) have recently emerged to complement LC and further improve the depth of proteomics. Given the theoretical advantages in speed and robustness of IMS in comparison to LC, we envision that ongoing improvements to IMS paired with MS may eventually make LC obsolete, especially when combined with targeted or simplified analyses, such as rapid clinical proteomics analysis of defined biomarker panels. In this perspective, we describe the need for faster analysis that might drive this transition, the current state of direct infusion proteomics, and discuss some technical challenges that must be overcome to fully complete the transition to entirely gas phase proteomics.
Assuntos
Espectrometria de Mobilidade Iônica , Proteômica , Proteômica/métodos , Espectrometria de Mobilidade Iônica/métodos , Humanos , Cromatografia Líquida/métodos , Espectrometria de Massas/métodos , Ensaios de Triagem em Larga Escala/métodosRESUMO
RATIONALE: The nutrient sensing mechanistic target of rapamycin complex 1 (mTORC1) and its primary inhibitor, tuberin (TSC2), are cues for the development of cardiac hypertrophy. The phenotype of mTORC1 induced hypertrophy is unknown. OBJECTIVE: To examine the impact of sustained mTORC1 activation on metabolism, function, and structure of the adult heart. METHODS AND RESULTS: We developed a mouse model of inducible, cardiac-specific sustained mTORC1 activation (mTORC1iSA) through deletion of Tsc2. Prior to hypertrophy, rates of glucose uptake and oxidation, as well as protein and enzymatic activity of glucose 6-phosphate isomerase (GPI) were decreased, while intracellular levels of glucose 6-phosphate (G6P) were increased. Subsequently, hypertrophy developed. Transcript levels of the fetal gene program and pathways of exercise-induced hypertrophy increased, while hypertrophy did not progress to heart failure. We therefore examined the hearts of wild-type mice subjected to voluntary physical activity and observed early changes in GPI, followed by hypertrophy. Rapamycin prevented these changes in both models. CONCLUSION: Activation of mTORC1 in the adult heart triggers the development of a non-specific form of hypertrophy which is preceded by changes in cardiac glucose metabolism.
Assuntos
Cardiomegalia/metabolismo , Técnicas de Silenciamento de Genes/métodos , Glucose/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Transdução de Sinais/genética , Animais , Cardiomegalia/dietoterapia , Cardiomegalia/genética , Cardiomegalia/prevenção & controle , Células Cultivadas , Dieta/métodos , Modelos Animais de Doenças , Ativação Enzimática/genética , Glucose-6-Fosfatase/metabolismo , Isomerases/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Miócitos Cardíacos/metabolismo , Oxirredução , Fosforilação/genética , Sirolimo/administração & dosagem , Proteína 2 do Complexo Esclerose Tuberosa/genética , Proteína 2 do Complexo Esclerose Tuberosa/metabolismoRESUMO
The lipid environment in which membrane proteins are embedded can influence their structure and function. Lipid-protein interactions and lipid-induced conformational changes necessary for protein function remain intractable in vivo using high-resolution techniques. Using Escherichia coli strains in which the normal phospholipid composition can be altered or foreign lipids can be introduced, we established the importance of membrane lipid composition for the proper folding, assembly, and function of E. coli lactose (LacY) and sucrose (CscB) permeases. However, the molecular mechanism underlying the lipid dependence for active transport remains unknown. Herein, we demonstrate that the structure and function of CscB and LacY can be modulated by the composition of the lipid environment. Using a combination of assays (transport activity of the substrate, protein topology, folding, and assembly into the membrane), we found that alterations in the membrane lipid composition lead to lipid-dependent structural changes in CscB and LacY. These changes affect the orientation of residues involved in LacY proton translocation and impact the rates of protonation and deprotonation of E325 by affecting the arrangement of transmembrane domains in the vicinity of the R302-E325 charge pair. Furthermore, the structural changes caused by changes in membrane lipid composition can be altered by a single-point mutation, highlighting the adaptability of these transporters to their environment. Altogether, our results demonstrate that direct interactions between a protein and its lipid environment uniquely contribute to membrane protein organization and function. Because members of the major facilitator superfamily present with well-conserved functional architecture, we anticipate that our findings can be extrapolated to other membrane protein transporters.
Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Lipídeos de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Transporte de Monossacarídeos/metabolismo , Simportadores/metabolismo , Proteínas de Escherichia coli/química , Lipídeos de Membrana/química , Proteínas de Membrana Transportadoras/química , Modelos Moleculares , Proteínas de Transporte de Monossacarídeos/química , Simportadores/químicaRESUMO
Posttranslational modifications of proteins, such as phosphorylation and dephosphorylation, play critical roles in cellular functions through diverse cell signaling pathways. Protein kinases and phosphatases have been described early on as key regulatory elements of the phosphorylated state of proteins. Tight spatial and temporal regulation of protein kinase and phosphatase activities has to be achieved in the cell to ensure accurate signal transduction. We demonstrated previously that phosphorylation of a membrane protein can lead to its topological rearrangement. Additionally, we found that both the rate and extent of topological rearrangement upon phosphorylation are lipid charge- and lipid environment-dependent. Here, using a model membrane protein (the bacterial lactose permease LacY reconstituted in proteoliposomes) and a combination of real-time measurements and steady-state assessments of protein topology, we established a set of experimental conditions to dissect the effects of phosphorylation and dephosphorylation of a membrane protein on its topological orientation. We also demonstrate that the phosphorylation-induced topological switch of a membrane protein can be reversed upon protein dephosphorylation, revealing a new regulatory role for phosphorylation/dephosphorylation cycles. Furthermore, we determined that the rate of topological rearrangement reversal is correlated with phosphatase activity and is influenced by the membrane's lipid composition, presenting new insights into the spatiotemporal control of the protein phosphorylation state. Together, our results highlight the importance of the compartmentalization of phosphorylation/dephosphorylation cycles in controlling membrane protein topology and, therefore, function, which are influenced by the local lipid environment of the membrane protein.
Assuntos
Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Fosfolipídeos/química , Fosfolipídeos/metabolismo , Dobramento de Proteína , Processamento de Proteína Pós-Traducional , Proteolipídeos/metabolismoRESUMO
Hematologic malignancies are frequently associated with cardiac pathologies. Mutations of isocitrate dehydrogenase 1 and 2 (IDH1/2) occur in a subset of acute myeloid leukemia patients, causing metabolic and epigenetic derangements. We have now discovered that altered metabolism in leukemic cells has a profound effect on cardiac metabolism. Combining mathematical modeling and in vivo as well as ex vivo studies, we found that increased amounts of the oncometabolite d-2-hydroxyglutarate (D2-HG), produced by IDH2 mutant leukemic cells, cause contractile dysfunction in the heart. This contractile dysfunction is associated with impaired oxidative decarboxylation of α-ketoglutarate, a redirection of Krebs cycle intermediates, and increased ATP citrate lyase (ACL) activity. Increased availability of D2-HG also leads to altered histone methylation and acetylation in the heart. We propose that D2-HG promotes cardiac dysfunction by impairing α-ketoglutarate dehydrogenase and induces histone modifications in an ACL-dependent manner. Collectively, our results highlight the impact of cancer cell metabolism on function and metabolism of the heart.
Assuntos
ATP Citrato (pro-S)-Liase/genética , Cardiomiopatias/genética , Neoplasias Hematológicas/genética , Isocitrato Desidrogenase/genética , Complexo Cetoglutarato Desidrogenase/genética , Miocárdio/metabolismo , ATP Citrato (pro-S)-Liase/metabolismo , Acetilação , Animais , Cardiomiopatias/complicações , Cardiomiopatias/metabolismo , Cardiomiopatias/patologia , Glutaratos/metabolismo , Neoplasias Hematológicas/complicações , Neoplasias Hematológicas/metabolismo , Neoplasias Hematológicas/patologia , Histonas/genética , Histonas/metabolismo , Humanos , Isocitrato Desidrogenase/metabolismo , Metilação , Camundongos , Mutação , Miocárdio/patologiaRESUMO
Membrane protein topology and folding are governed by structural principles and topogenic signals that are recognized and decoded by the protein insertion and translocation machineries at the time of initial membrane insertion and folding. We previously demonstrated that the lipid environment is also a determinant of initial protein topology, which is dynamically responsive to post-assembly changes in membrane lipid composition. However, the effect on protein topology of post-assembly phosphorylation of amino acids localized within initially cytoplasmically oriented extramembrane domains has never been investigated. Here, we show in a controlled in vitro system that phosphorylation of a membrane protein can trigger a change in topological arrangement. The rate of change occurred on a scale of seconds, comparable with the rates observed upon changes in the protein lipid environment. The rate and extent of topological rearrangement were dependent on the charges of extramembrane domains and the lipid bilayer surface. Using model membranes mimicking the lipid compositions of eukaryotic organelles, we determined that anionic lipids, cholesterol, sphingomyelin, and membrane fluidity play critical roles in these processes. Our results demonstrate how post-translational modifications may influence membrane protein topology in a lipid-dependent manner, both along the organelle trafficking pathway and at their final destination. The results provide further evidence that membrane protein topology is dynamic, integrating for the first time the effect of changes in lipid composition and regulators of cellular processes. The discovery of a new topology regulatory mechanism opens additional avenues for understanding unexplored structure-function relationships and the development of optimized topology prediction tools.
Assuntos
Membrana Celular/química , Bicamadas Lipídicas/química , Lipídeos de Membrana/química , Proteínas de Membrana/química , Processamento de Proteína Pós-Traducional , Membrana Celular/metabolismo , Bicamadas Lipídicas/metabolismo , Lipídeos de Membrana/metabolismo , Proteínas de Membrana/metabolismo , Fosforilação , Domínios ProteicosRESUMO
A fundamental objective in membrane biology is to understand and predict how a protein sequence folds and orients in a lipid bilayer. Establishing the principles governing membrane protein folding is central to understanding the molecular basis for membrane proteins that display multiple topologies, the intrinsic dynamic organization of membrane proteins, and membrane protein conformational disorders resulting in disease. We previously established that lactose permease of Escherichia coli displays a mixture of topological conformations and undergoes postassembly bidirectional changes in orientation within the lipid bilayer triggered by a change in membrane phosphatidylethanolamine content, both in vivo and in vitro. However, the physiological implications and mechanism of dynamic structural reorganization of membrane proteins due to changes in lipid environment are limited by the lack of approaches addressing the kinetic parameters of transmembrane protein flipping. In this study, real-time fluorescence spectroscopy was used to determine the rates of protein flipping in the lipid bilayer in both directions and transbilayer flipping of lipids triggered by a change in proteoliposome lipid composition. Our results provide, for the first time to our knowledge, a dynamic picture of these events and demonstrate that membrane protein topological rearrangements in response to lipid modulations occur rapidly following a threshold change in proteoliposome lipid composition. Protein flipping was not accompanied by extensive lipid-dependent unfolding of transmembrane domains. Establishment of lipid bilayer asymmetry was not required but may accelerate the rate of protein flipping. Membrane protein flipping was found to accelerate the rate of transbilayer flipping of lipids.
Assuntos
Proteínas de Membrana/química , Fosfolipídeos/química , Escherichia coli/enzimologia , Transferência Ressonante de Energia de Fluorescência , Bicamadas Lipídicas , Proteínas de Membrana Transportadoras/química , Proteolipídeos , Espectrometria de FluorescênciaRESUMO
Bacteria have evolved multiple strategies to sense and rapidly adapt to challenging and ever-changing environmental conditions. The ability to alter membrane lipid composition, a key component of the cellular envelope, is crucial for bacterial survival and adaptation in response to environmental stress. However, the precise roles played by membrane phospholipids in bacterial physiology and stress adaptation are not fully elucidated. The goal of this study was to define the role of membrane phospholipids in adaptation to stress and maintenance of bacterial cell fitness. By using genetically modified strains in which the membrane phospholipid composition can be systematically manipulated, we show that alterations in major Escherichia coli phospholipids transform these cells globally. We found that alterations in phospholipids impair the cellular envelope structure and function, the ability to form biofilms, and bacterial fitness and cause phospholipid-dependent susceptibility to environmental stresses. This study provides an unprecedented view of the structural, signaling, and metabolic pathways in which bacterial phospholipids participate, allowing the design of new approaches in the investigation of lipid-dependent processes involved in bacterial physiology and adaptation.IMPORTANCE In order to cope with and adapt to a wide range of environmental conditions, bacteria have to sense and quickly respond to fluctuating conditions. In this study, we investigated the effects of systematic and controlled alterations in bacterial phospholipids on cell shape, physiology, and stress adaptation. We provide new evidence that alterations of specific phospholipids in Escherichia coli have detrimental effects on cellular shape, envelope integrity, and cell physiology that impair biofilm formation, cellular envelope remodeling, and adaptability to environmental stresses. These findings hold promise for future antibacterial therapies that target bacterial lipid biosynthesis.
Assuntos
Membrana Celular/fisiologia , Escherichia coli/fisiologia , Fosfolipídeos/metabolismo , Aderência Bacteriana , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Biofilmes , Escherichia coli/citologia , Escherichia coli/genética , Escherichia coli/ultraestrutura , Regulação Bacteriana da Expressão Gênica/fisiologia , Homeostase/fisiologia , Lipopolissacarídeos/metabolismo , Estresse FisiológicoRESUMO
The final topology of membrane proteins is thought to be dictated primarily by the encoding sequence. However, according to the Charge Balance Rule the topogenic signals within nascent membrane proteins are interpreted in agreement with the Positive Inside Rule as influenced by the protein phospholipid environment. The role of long-range protein-lipid interactions in establishing a final uniform or dual topology is unknown. In order to address this role, we determined the positional dependence of the potency of charged residues as topological signals within Escherichia coli sucrose permease (CscB) in cells in which the zwitterionic phospholipid phosphatidylethanolamine (PE), acting as topological determinant, was either eliminated or tightly titrated. Although the position of a single or paired oppositely charged amino acid residues within an extramembrane domain (EMD), either proximal, central or distal to a transmembrane domain (TMD) end, does not appear to be important, the oppositely charged residues exert their topogenic effects separately only in the absence of PE. Thus, the Charge Balance Rule can be executed in a retrograde manner from any cytoplasmic EMD or any residue within an EMD most likely outside of the translocon. Moreover, CscB is inserted into the membrane in two opposite orientations at different ratios with the native orientation proportional to the mol % of PE. The results demonstrate how the cooperative contribution of lipid-protein interactions affects the potency of charged residues as topological signals, providing a molecular mechanism for the realization of single, equal or different amounts of oppositely oriented protein within the same membrane.
Assuntos
Proteínas de Escherichia coli/metabolismo , Lipídeos de Membrana/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Sequência de Aminoácidos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Membrana Transportadoras/químicaRESUMO
Phospholipids could exert their effect on membrane protein topology either directly by interacting with topogenic signals of newly inserted proteins or indirectly by influencing the protein assembly machinery. In vivo lactose permease (LacY) of Escherichia coli displays a mixture of topological conformations ranging from complete inversion of the N-terminal helical bundle to mixed topology and then to completely native topology as phosphatidylethanolamine (PE) is increased from 0% to 70% of membrane phospholipids. These topological conformers are interconvertible by postassembly synthesis or dilution of PE in vivo. To investigate whether coexistence of multiple topological conformers is dependent solely on the membrane lipid composition, we determined the topological organization of LacY in an in vitro proteoliposome system in which lipid composition can be systematically controlled before (liposomes) and after (fliposomes) reconstitution using a lipid exchange technique. Purified LacY reconstituted into preformed liposomes of increasing PE content displayed inverted topology at low PE and then a mixture of inverted and proper topologies with the latter increasing with increasing PE until all LacY adopted its native topology. Interconversion between topological conformers of LacY was observed in a PE dose-dependent manner by either increasing or decreasing PE levels in proteoliposomes postreconstitution of LacY, clearly demonstrating that membrane protein topology can be changed simply by changing membrane lipid composition independent of other cellular factors. The results provide a thermodynamic-based lipid-dependent model for shifting the equilibrium between different conformational states of a membrane protein.
Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Proteínas de Transporte de Monossacarídeos/química , Conformação Proteica , Simportadores/química , Western Blotting , Cromatografia em Camada Fina , Eletroforese em Gel de Poliacrilamida , Proteínas de Escherichia coli/genética , Imunoprecipitação , Lipossomos/metabolismo , Lipossomos/ultraestrutura , Microscopia Eletrônica , Proteínas de Transporte de Monossacarídeos/genética , Fosfolipídeos/metabolismo , Simportadores/genéticaRESUMO
Membrane protein folding and topogenesis are tuned to a given lipid profile since lipids and proteins have co-evolved to follow a set of interdependent rules governing final protein topological organization. Transmembrane domain (TMD) topology is determined via a dynamic process in which topogenic signals in the nascent protein are recognized and interpreted initially by the translocon followed by a given lipid profile in accordance with the Positive Inside Rule. The net zero charged phospholipid phosphatidylethanolamine and other neutral lipids dampen the translocation potential of negatively charged residues in favor of the cytoplasmic retention potential of positively charged residues (Charge Balance Rule). This explains why positively charged residues are more potent topological signals than negatively charged residues. Dynamic changes in orientation of TMDs during or after membrane insertion are attributed to non-sequential cooperative and collective lipid-protein charge interactions as well as long-term interactions within a protein. The proportion of dual topological conformers of a membrane protein varies in a dose responsive manner with changes in the membrane lipid composition not only in vivo but also in vitro and therefore is determined by the membrane lipid composition. Switching between two opposite TMD topologies can occur in either direction in vivo and also in liposomes (designated as fliposomes) independent of any other cellular factors. Such lipid-dependent post-insertional reversibility of TMD orientation indicates a thermodynamically driven process that can occur at any time and in any cell membrane driven by changes in the lipid composition. This dynamic view of protein topological organization influenced by the lipid environment reveals previously unrecognized possibilities for cellular regulation and understanding of disease states resulting from mis-folded proteins. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.
Assuntos
Membrana Celular/metabolismo , Proteínas de Membrana/metabolismo , Fosfatidiletanolaminas/metabolismo , Transporte Proteico/genética , Bactérias/química , Bactérias/metabolismo , Citoplasma/metabolismo , Lipídeos/química , Lipídeos/genética , Proteínas de Membrana/química , Fosfatidiletanolaminas/genética , Dobramento de Proteína , Estrutura Terciária de Proteína/genéticaRESUMO
Energy-dependent uphill transport but not energy-independent downhill transport by lactose permease (LacY) is impaired when expressed in Escherichia coli cells or reconstituted in liposomes lacking phosphatidylethanolamine (PE) and containing only anionic phospholipids. The absence of PE results in inversion of the N-terminal half and misfolding of periplasmic domain P7, which are required for uphill transport of substrates. Replacement of PE in vitro by lipids with no net charge (phosphatidylcholine (PC), monoglucosyl diacylglycerol (GlcDAG), or diglucosyl diacylglycerol (GlcGlcDAG)) supported wild type transmembrane topology of the N-terminal half of LacY. The restoration of uphill transport in vitro was dependent on LacY native topology and proper folding of P7. Support of uphill transport by net neutral lipids in vitro (PE > PC â« GlcDAG ≠ GlcGlcDAG provided that PE or PC contained one saturated fatty acid) paralleled the results observed previously in vivo (PE = PC > GlcDAG ≠ GlcGlcDAG). Therefore, a free amino group is not required for uphill transport as previously concluded based on the lack of in vitro uphill transport when fully unsaturated PC replaced E. coli-derived PE. A close correlation was observed in vivo and in vitro between the ability of LacY to carry out uphill transport, the native conformation of P7, and the lipid headgroup and fatty acid composition. Therefore, the headgroup and the fatty acid composition of lipids are important for defining LacY topological organization and catalytically important structural features, further illustrating the direct role of lipids, independent of other cellular factors, in defining membrane protein structure/function.
Assuntos
Aminas/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Ácidos Graxos/química , Lipídeos/química , Proteínas de Membrana Transportadoras/química , Proteínas de Transporte de Monossacarídeos/química , Simportadores/química , Transporte Biológico , Catálise , Membrana Celular/metabolismo , Densitometria/métodos , Epitopos/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Proteínas de Transporte de Monossacarídeos/metabolismo , Fosfatidiletanolaminas/química , Ligação Proteica , Proteolipídeos/metabolismo , Simportadores/metabolismoRESUMO
Daptomycin is a last resort lipopeptide antibiotic that disrupts cell membrane (CM) and peptidoglycan homeostasis. Enterococcus faecalis has developed a sophisticated mechanism to avoid daptomycin killing by re-distributing CM anionic phospholipids away from the septum. The CM changes are orchestrated by a three-component regulatory system, designated LiaFSR, with a possible contribution of cardiolipin synthase (Cls). However, the mechanism by which LiaFSR controls the CM response and the role of Cls are unknown. Here, we show that cardiolipin synthase activity is essential for anionic phospholipid redistribution and daptomycin resistance since deletion of the two genes (cls1 and cls2) encoding Cls abolished CM remodeling. We identified LiaY, a transmembrane protein regulated by LiaFSR, and Cls1 as important mediators of CM remodeling required for re-distribution of anionic phospholipid microdomains. Together, our insights provide a mechanistic framework on the enterococcal response to cell envelope antibiotics that could be exploited therapeutically.
RESUMO
OBJECTIVES: Cachexia is a metabolic disorder and comorbidity with cancer and heart failure. The syndrome impacts more than thirty million people worldwide, accounting for 20% of all cancer deaths. In acute myeloid leukemia, somatic mutations of the metabolic enzyme isocitrate dehydrogenase 1 and 2 cause the production of the oncometabolite D2-hydroxyglutarate (D2-HG). Increased production of D2-HG is associated with heart and skeletal muscle atrophy, but the mechanistic links between metabolic and proteomic remodeling remain poorly understood. Therefore, we assessed how oncometabolic stress by D2-HG activates autophagy and drives skeletal muscle loss. METHODS: We quantified genomic, metabolomic, and proteomic changes in cultured skeletal muscle cells and mouse models of IDH-mutant leukemia using RNA sequencing, mass spectrometry, and computational modeling. RESULTS: D2-HG impairs NADH redox homeostasis in myotubes. Increased NAD+ levels drive activation of nuclear deacetylase Sirt1, which causes deacetylation and activation of LC3, a key regulator of autophagy. Using LC3 mutants, we confirm that deacetylation of LC3 by Sirt1 shifts its distribution from the nucleus into the cytosol, where it can undergo lipidation at pre-autophagic membranes. Sirt1 silencing or p300 overexpression attenuated autophagy activation in myotubes. In vivo, we identified increased muscle atrophy and reduced grip strength in response to D2-HG in male vs. female mice. In male mice, glycolytic intermediates accumulated, and protein expression of oxidative phosphorylation machinery was reduced. In contrast, female animals upregulated the same proteins, attenuating the phenotype in vivo. Network modeling and machine learning algorithms allowed us to identify candidate proteins essential for regulating oncometabolic adaptation in mouse skeletal muscle. CONCLUSIONS: Our multi-omics approach exposes new metabolic vulnerabilities in response to D2-HG in skeletal muscle and provides a conceptual framework for identifying therapeutic targets in cachexia.
Assuntos
Autofagia , Glutaratos , Músculo Esquelético , Transdução de Sinais , Animais , Camundongos , Músculo Esquelético/metabolismo , Masculino , Glutaratos/metabolismo , Isocitrato Desidrogenase/metabolismo , Isocitrato Desidrogenase/genética , Caquexia/metabolismo , Feminino , Sirtuína 1/metabolismo , Sirtuína 1/genética , Camundongos Endogâmicos C57BLRESUMO
Background: Metabolic remodeling is a hallmark of the failing heart. Oncometabolic stress during cancer increases the activity and abundance of the ATP-dependent citrate lyase (ACL, Acly ), which promotes histone acetylation and cardiac adaptation. ACL is critical for the de novo synthesis of lipids, but how these metabolic alterations contribute to cardiac structural and functional changes remains unclear. Methods: We utilized human heart tissue samples from healthy donor hearts and patients with hypertrophic cardiomyopathy. Further, we used CRISPR/Cas9 gene editing to inactivate Acly in cardiomyocytes of MyH6-Cas9 mice. In vivo, positron emission tomography and ex vivo stable isotope tracer labeling were used to quantify metabolic flux changes in response to the loss of ACL. We conducted a multi-omics analysis using RNA-sequencing and mass spectrometry-based metabolomics and proteomics. Experimental data were integrated into computational modeling using the metabolic network CardioNet to identify significantly dysregulated metabolic processes at a systems level. Results: Here, we show that in mice, ACL drives metabolic adaptation in the heart to sustain contractile function, histone acetylation, and lipid modulation. Notably, we show that loss of ACL increases glucose oxidation while maintaining fatty acid oxidation. Ex vivo isotope tracing experiments revealed a reduced efflux of glucose-derived citrate from the mitochondria into the cytosol, confirming that citrate is required for reductive metabolism in the heart. We demonstrate that YAP inactivation facilitates ACL deficiency. Computational flux analysis and integrative multi-omics analysis indicate that loss of ACL induces alternative isocitrate dehydrogenase 1 flux to compensate. Conclusions: This study mechanistically delineates how cardiac metabolism compensates for suppressed citrate metabolism in response to ACL loss and uncovers metabolic vulnerabilities in the heart.
RESUMO
Daptomycin is a last-resort lipopeptide antibiotic that disrupts cell membrane (CM) and peptidoglycan homeostasis. Enterococcus faecalis has developed a sophisticated mechanism to avoid daptomycin killing by re-distributing CM anionic phospholipids away from the septum. The CM changes are orchestrated by a three-component regulatory system, designated LiaFSR, with a possible contribution of cardiolipin synthase (Cls). However, the mechanism by which LiaFSR controls the CM response and the role of Cls are unknown. Here, we show that cardiolipin synthase activity is essential for anionic phospholipid redistribution and daptomycin resistance since deletion of the two genes ( cls1 and cls2 ) encoding Cls abolished CM remodeling. We identified LiaY, a transmembrane protein regulated by LiaFSR, as an important mediator of CM remodeling required for re-distribution of anionic phospholipid microdomains via interactions with Cls1. Together, our insights provide a mechanistic framework on the enterococcal response to cell envelope antibiotics that could be exploited therapeutically.
RESUMO
The N-terminal six-transmembrane domain (TM) bundle of lactose permease of Escherichia coli is uniformly inverted when assembled in membranes lacking phosphatidylethanolamine (PE). Inversion is dependent on the net charge of cytoplasmically exposed protein domains containing positive and negative residues, net charge of the membrane surface, and low hydrophobicity of TM VII acting as a molecular hinge between the two halves of lactose permease (Bogdanov, M., Xie, J., Heacock, P., and Dowhan, W. (2008) J. Cell Biol. 182, 925-935). Net neutral lipids suppress the membrane translocation potential of negatively charged amino acids, thus increasing the cytoplasmic retention potential of positively charged amino acids. Herein, TM organization of sucrose permease (CscB) and phenylalanine permease (PheP) as a function of membrane lipid composition was investigated to extend these principles to other proteins. For CscB, topological dependence on PE only becomes evident after a significant increase in the net negative charge of the cytoplasmic surface of the N-terminal TM bundle. High negative charge is required to overcome the thermodynamic block to inversion due to the high hydrophobicity of TM VII. Increasing the positive charge of the cytoplasmic surface of the N-terminal TM hairpin of PheP, which is misoriented in PE-lacking cells, favors native orientation in the absence of PE. PheP and CscB also display co-existing dual topologies dependent on changes in the charge balance between protein domains and the membrane lipids. Therefore, the topology of both permeases is dependent on PE. However, CscB topology is governed by thermodynamic balance between opposing lipid-dependent electrostatic and hydrophobic interactions.
Assuntos
Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/metabolismo , Lipídeos de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/química , Proteínas de Bactérias/química , Proteínas de Escherichia coli/química , Proteínas de Membrana Transportadoras/química , Fosfatidiletanolaminas/metabolismoRESUMO
Gap junctions are intercellular channels that allow the passage of ions, small molecules, and second messengers that are essential for the coordination of cellular function. They are formed by two hemichannels, each constituted by the oligomerization of six connexins (Cx). Among the 21 different human Cx isoforms, studies have suggested that in the heart, Cx40 and Cx43 can oligomerize to form heteromeric hemichannels. The mechanism of heteromeric channel regulation has not been clearly defined. Tissue ischemia leads to intracellular acidification and closure of Cx43 and Cx40 homomeric channels. However, coexpression of Cx40 and Cx43 in Xenopus oocytes enhances the pH sensitivity of the channel. This phenomenon requires the carboxyl-terminal (CT) part of both connexins. In this study we used different biophysical methods to determine the structure of the Cx40CT and characterize the Cx40CT/Cx43CT interaction. Our results revealed that the Cx40CT is an intrinsically disordered protein similar to the Cx43CT and that the Cx40CT and Cx43CT can interact. Additionally, we have identified an interaction between the Cx40CT and the cytoplasmic loop of Cx40 as well as between the Cx40CT and the cytoplasmic loop of Cx43 (and vice versa). Our studies support the "particle-receptor" model for pH gating of Cx40 and Cx43 gap junction channels and suggest that interactions between cytoplasmic regulatory domains (both homo- and hetero-connexin) could be important for the regulation of heteromeric channels.
Assuntos
Conexina 43/química , Conexinas/química , Citoplasma/metabolismo , Sequência de Aminoácidos , Animais , Conexina 43/metabolismo , Conexinas/metabolismo , Junções Comunicantes/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Oócitos/metabolismo , Isoformas de Proteínas , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Xenopus , Proteína alfa-5 de Junções ComunicantesRESUMO
Translocation of preproteins across the Escherichia coli inner membrane requires anionic lipids by virtue of their negative head-group charge either in vivo or in situ. However, available results do not differentiate between the roles of monoanionic phosphatidylglycerol and dianionic cardiolipin (CL) in this essential membrane-related process. To define in vivo the molecular steps affected by the absence of CL in protein translocation and insertion, we analyzed translocon activity, SecYEG stability and its interaction with SecA in an E. coli mutant devoid of CL. Although no growth defects were observed, co- and post-translational translocation of α-helical proteins across inner membrane and the assembly of outer membrane ß-barrel precursors were severely compromised in CL-lacking cells. Components of proton-motive force which could impair protein insertion into and translocation across the inner membrane, were unaffected. However, stability of the dimeric SecYEG complex and oligomerization properties of SecA were strongly compromised while the levels of individual SecYEG translocon components, SecA and insertase YidC were largely unaffected. These results demonstrate that CL is required in vivo for the stability of the bacterial translocon and its efficient function in co-translational insertion into and translocation across the inner membrane of E. coli.
Assuntos
Cardiolipinas/metabolismo , Membrana Celular/metabolismo , Escherichia coli/metabolismo , Canais de Translocação SEC/metabolismo , Cardiolipinas/genética , Escherichia coli/citologia , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Mutação , Estabilidade Proteica , Transporte Proteico , Proteínas SecA/metabolismoRESUMO
Large unilamellar vesicles of 1-hexanoyl-2-(9Z-12Z-octadecadienoyl)-sn-glycero-3-phosphocholine (PLPC) have been used as model membrane to investigate the effect of increasing amount of cardiolipin (1',3'-bis-[1,2-Di-(9Z-12Z-octadecadienoyl)-sn-glycero-3-phospho]-sn-glycerol, CL) on the peroxidizability of the lipid phase. Hydroxyl radicals generated by gamma radiolysis of water initiated the lipid peroxidation. Both peroxidation products (conjugated dienes and hydroperoxides of PLPC, mono- and dihydroperoxides of CL) and disappearance of CL and PLPC were assessed as a function of the radiation dose (25 to 400 Gy, I = 10 Gy min(-1)). Our results show that the addition of 5% to 15% CL to large unilamellar vesicles (concentration ratio) produces almost complete inhibition of PLPC peroxidation. Thus, for 15% CL (known to be the proportion of CL in the inner mitochondrial membrane), the radiolytic yield of formation of PLPC hydroperoxides is reduced to zero, whereas it is equal to (3.1 +/- 0.2) x 10(-7) mol J(-1) for CL hydroperoxides, showing the importance of the targeted CL. For this concentration ratio (CL/ PLPC 15%), we have established the balance equation between the consumption of CL [G(-CL) = (2.8 +/- 0.1) x 10(-7) mol J(-1)] and the formation of CL hydroperoxides [G(CLOOH(T)) = (3.1 +/- 0.2) x 10(-7) mol J(-1)]. In addition, the radiolytic yields of disappearance of PLPC and CL have been determined [(1.5 +/- 0.1) x 10(-7) mol J(-1) and (2.8 +/- 0.1) x 10(-7) mol J(-1), respectively], their sum [(4.3 +/- 0.2) x 10(-7) mol J(-1)] being higher than G(HO.) (2.8 x 10(-7) mol J(-1)). However, there is no balance between the radiolytic yield of formation of PLPC hydroperoxides [G (PCOOH(T)) approximately 0] and the yield of disappearance of PLPC [(1.5 +/- 0.1) x 10(-7) mol J(-1)], likely because lipid fragments (not measured in this work) could be generated from HO(.) reaction on the polar head of PLPC. These results have been interpreted by assuming that the hydroxyl radicals attack in competition both lipid targets, i.e. PLPC and CL, with a higher sensitivity to CL oxidation. It can be concluded that a little amount of CL (10-15% CL/ PLPC concentration ratio) may exert a strong protective effect against the HO(.)-induced peroxidation of PLPC.