Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
PLoS Pathog ; 18(4): e1010458, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35395062

RESUMO

Two-component regulatory systems (TCS) are among the most widespread mechanisms that bacteria use to sense and respond to environmental changes. In the human pathogen Streptococcus pneumoniae, a total of 13 TCS have been identified and many of them have been linked to pathogenicity. Notably, TCS01 strongly contributes to pneumococcal virulence in several infection models. However, it remains one of the least studied TCS in pneumococci and its functional role is still unclear. In this study, we demonstrate that TCS01 cooperates with a BceAB-type ABC transporter to sense and induce resistance to structurally-unrelated antimicrobial peptides of bacterial origin that all target undecaprenyl-pyrophosphate or lipid II, which are essential precursors of cell wall biosynthesis. Even though tcs01 and bceAB genes do not locate in the same gene cluster, disruption of either of them equally sensitized the bacterium to the same set of antimicrobial peptides. We show that the key function of TCS01 is to upregulate the expression of the transporter, while the latter appears the main actor in resistance. Electrophoretic mobility shift assays further demonstrated that the response regulator of TCS01 binds to the promoter region of the bceAB genes, implying a direct control of these genes. The BceAB transporter was overexpressed and purified from E. coli. After reconstitution in liposomes, it displayed substantial ATPase and GTPase activities that were stimulated by antimicrobial peptides to which it confers resistance to, revealing new functional features of a BceAB-type transporter. Altogether, this inducible defense mechanism likely contributes to the survival of the opportunistic microorganism in the human host, in which competition among commensal microorganisms is a key determinant for effective host colonization and invasive path.


Assuntos
Peptídeos Antimicrobianos , Farmacorresistência Bacteriana , Regulação Bacteriana da Expressão Gênica , Streptococcus pneumoniae , Peptídeos Antimicrobianos/farmacologia , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana/genética , Escherichia coli/metabolismo , Humanos , Proteínas de Membrana Transportadoras/metabolismo , Peptídeos/metabolismo , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/metabolismo
2.
PLoS Pathog ; 17(5): e1009576, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34015061

RESUMO

The efficient spread of SARS-CoV-2 resulted in a unique pandemic in modern history. Despite early identification of ACE2 as the receptor for viral spike protein, much remains to be understood about the molecular events behind viral dissemination. We evaluated the contribution of C-type lectin receptors (CLRS) of antigen-presenting cells, widely present in respiratory mucosa and lung tissue. DC-SIGN, L-SIGN, Langerin and MGL bind to diverse glycans of the spike using multiple interaction areas. Using pseudovirus and cells derived from monocytes or T-lymphocytes, we demonstrate that while virus capture by the CLRs examined does not allow direct cell infection, DC/L-SIGN, among these receptors, promote virus transfer to permissive ACE2+ Vero E6 cells. A glycomimetic compound designed against DC-SIGN, enable inhibition of this process. These data have been then confirmed using authentic SARS-CoV-2 virus and human respiratory cell lines. Thus, we described a mechanism potentiating viral spreading of infection.


Assuntos
COVID-19/transmissão , Lectinas Tipo C/metabolismo , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Animais , Antígenos CD/metabolismo , COVID-19/prevenção & controle , Moléculas de Adesão Celular/metabolismo , Linhagem Celular , Chlorocebus aethiops , Humanos , Células Jurkat , Pulmão/metabolismo , Lectinas de Ligação a Manose/metabolismo , Manosídeos/farmacologia , Ligação Proteica/efeitos dos fármacos , Receptores de Superfície Celular/metabolismo , Mucosa Respiratória/metabolismo , Células Vero
3.
Mol Pharm ; 19(1): 235-245, 2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-34927439

RESUMO

Alterations in glycosylation cause the emergence of tumor-associated carbohydrate antigens (TACAs) during tumorigenesis. Truncation of O-glycans reveals the Thomsen nouveau (Tn) antigen, an N-acetylgalactosamine (GalNAc) frequently attached to serine or threonine amino acids, that is accessible on the surface of cancer cells but not on healthy cells. Interestingly, GalNac can be recognized by macrophage galactose lectin (MGL), a type C lectin receptor expressed in immune cells. In this study, recombinant MGL fragments were tested in vitro for their cancer cell-targeting efficiency by flow cytometry and confocal microscopy and in vivo after administration of fluorescent MGL to tumor-bearing mice. Our results demonstrate the ability of MGL to target Tn-positive human tumors without inducing toxicity. This outcome makes MGL, a fragment of a normal human protein, the first vector candidate for in vivo diagnosis and imaging of human tumors and, possibly, for therapeutic applications.


Assuntos
Antígenos Glicosídicos Associados a Tumores/metabolismo , Lectinas Tipo C/metabolismo , Células A549 , Animais , Feminino , Citometria de Fluxo , Células HT29 , Humanos , Camundongos , Camundongos Nus , Microscopia Confocal , Transplante de Neoplasias , Proteínas Recombinantes , Esferoides Celulares , Ressonância de Plasmônio de Superfície
4.
Org Biomol Chem ; 19(34): 7357-7362, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34387640

RESUMO

Glycodendron microarrays with defined valency have been constructed by on-chip synthesis on hydrophobic indium tin oxide (ITO) coated glass slides and employed in lectin-carbohydrate binding studies with several plant and human lectins. Glycodendrons presenting sugar epitopes at different valencies were prepared by spotwise strain-promoted azide-alkyne cycloaddition (SPAAC) between immobilised cyclooctyne dendrons and azide functionalised glycans. The non-covalent immobilisation of dendrons on the ITO surface by hydrophobic interaction allowed us to study dendron surface density and SPAAC conversion rate by in situ MALDI-TOF MS analysis. By diluting the dendron surface density we could study how the carbohydrate-lectin interactions became exclusively dependant on the valency of the immobilised glycodendron.


Assuntos
Lectinas
5.
Biophys J ; 119(3): 605-618, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32668232

RESUMO

Small angle neutron scattering (SANS) provides a method to obtain important low-resolution information for integral membrane proteins (IMPs), challenging targets for structural determination. Specific deuteration furnishes a "stealth" carrier for the solubilized IMP. We used SANS to determine a structural envelope of SpNOX, the Streptococcus pneumoniae NADPH oxidase (NOX), a prokaryotic model system for exploring structure and function of eukaryotic NOXes. SpNOX was solubilized in the detergent lauryl maltose neopentyl glycol, which provides optimal SpNOX stability and activity. Using deuterated solvent and protein, the lauryl maltose neopentyl glycol was experimentally undetected in SANS. This affords a cost-effective SANS approach for obtaining novel structural information on IMPs. Combining SANS data with molecular modeling provided a first, to our knowledge, structural characterization of an entire NOX enzyme. It revealed a distinctly less compact structure than that predicted from the docking of homologous crystal structures of the separate transmembrane and dehydrogenase domains, consistent with a flexible linker connecting the two domains.


Assuntos
NADPH Oxidases , Difração de Nêutrons , Proteínas de Membrana , Oxirredução , Espalhamento a Baixo Ângulo
6.
Chemistry ; 26(56): 12818-12830, 2020 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-32939912

RESUMO

Due to their interactions with C-type lectin receptors (CLRs), glycans from the helminth Schistosoma mansoni represent promising leads for treatment of autoimmune diseases, allergies or cancer. We chemo-enzymatically synthesized nine O-glycans based on the two predominant O-glycan cores observed in the infectious stages of schistosomiasis, the mucin core 2 and the S. mansoni core. The O-glycans were fucosylated next to a selection of N-glycans directly on a microarray slide using a recombinant fucosyltransferase and GDP-fucose or GDP-6-azidofucose as donor. Binding assays with fluorescently labelled human CLRs DC-SIGN, DC-SIGNR and MGL revealed the novel O-glycan O8 as the best ligand for MGL from our panel. Significant binding to DC-SIGN was also found for azido-fucosylated glycans. Contrasting binding specificities were observed between the monovalent carbohydrate recognition domain (CRD) and the tetravalent extracellular domain (ECD) of DC-SIGNR.


Assuntos
Receptores de Superfície Celular/metabolismo , Moléculas de Adesão Celular , Humanos , Lectinas Tipo C , Ligantes , Polissacarídeos
7.
Biomacromolecules ; 21(7): 2726-2734, 2020 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-32525659

RESUMO

Chondroitin sulfate type-E (CS-E) is a sulfated polysaccharide that shows several interesting biological activities, such as modulation of the neuronal growth factor signaling and its interaction with langerin, a C-type lectin with a crucial role in the immunological system. However, applications of CS-E are hampered by the typical heterogeneous structure of the natural polysaccharide. Well-defined, homogeneous CS-E analogues are highly demanded. Here, we report the synthesis of monodispersed, structurally well-defined second-generation glycodendrimers displaying up to 18 CS-E disaccharide units. These complex multivalent systems have a molecular weight and a number of disaccharide repeating units comparable with those of the natural polysaccharides. In addition, surface plasmon resonance experiments revealed a calcium-independent interaction between these glycodendrimers and langerin, in the micromolar range, highlighting the utility of these compounds as CS-E mimetics.


Assuntos
Sulfatos de Condroitina , Dendrímeros , Dissacarídeos , Ligantes , Polissacarídeos
8.
Org Biomol Chem ; 18(25): 4763-4772, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32608454

RESUMO

Multivalent interactions between complex carbohydrates and oligomeric C-type lectins govern a wide range of immune responses. Up to date, standard SPR (surface plasmon resonance) competitive assays have largely been to evaluate binding properties from monosaccharide units (low affinity, mM) to multivalent elemental antagonists (moderate affinity, µM). Herein, we report typical case-studies of SPR competitive assays showing that they underestimate the potency of glycoclusters to inhibit the interaction between DC-SIGN and immobilized glycoconjugates. This paper describes the design and implementation of a SPR direct interaction over DC-SIGN oriented surfaces, extendable to other C-type lectin surfaces as such Langerin. This setup provides an overview of intrinsic avidity generation emanating simultaneously from multivalent glycoclusters and from DC-SIGN tetramers organized in nanoclusters at the cell membrane. To do so, covalent biospecific capture of DC-SIGN via StreptagII/StrepTactin interaction preserves tetrameric DC-SIGN, accessibility and topology of its active sites, that would have been dissociated using standard EDC-NHS procedure under acidic conditions. From the tested glycoclusters libraries, we demonstrated that the scaffold architecture, the valency and the glycomimetic-based ligand are crucial to reach nanomolar affinities for DC-SIGN. The glycocluster 3·D illustrates the tightest binding partner in this set for a DC-SIGN surface (KD = 18 nM). Moreover, the selectivity at monovalent scale of glycomimetic D can be easily analyzed at multivalent scale comparing its binding over different C-type lectin immobilized surfaces. This approach may give rise to novel insights into the multivalent binding mechanisms responsible for avidity and make a major contribution to the full characterization of the binding potency of promising specific and multivalent immodulators.


Assuntos
Moléculas de Adesão Celular/química , Glicoconjugados/química , Lectinas Tipo C/química , Receptores de Superfície Celular/química , Humanos , Conformação Molecular , Ressonância de Plasmônio de Superfície , Propriedades de Superfície
9.
Int J Mol Sci ; 21(15)2020 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-32722514

RESUMO

C-type lectin receptor (CLR)/carbohydrate recognition occurs through low affinity interactions. Nature compensates that weakness by multivalent display of the lectin carbohydrate recognition domain (CRD) at the cell surface. Mimicking these low affinity interactions in vitro is essential to better understand CLR/glycan interactions. Here, we present a strategy to create a generic construct with a tetrameric presentation of the CRD for any CLR, termed TETRALEC. We applied our strategy to a naturally occurring tetrameric CRD, DC-SIGNR, and compared the TETRALEC ligand binding capacity by synthetic N- and O-glycans microarray using three different DC-SIGNR constructs i) its natural tetrameric counterpart, ii) the monomeric CRD and iii) a dimeric Fc-CRD fusion. DC-SIGNR TETRALEC construct showed a similar binding profile to that of its natural tetrameric counterpart. However, differences observed in recognition of low affinity ligands underlined the importance of the CRD spatial arrangement. Moreover, we further extended the applications of DC-SIGNR TETRALEC to evaluate CLR/pathogens interactions. This construct was able to recognize heat-killed Candida albicans by flow cytometry and confocal microscopy, a so far unreported specificity of DC-SIGNR. In summary, the newly developed DC-SIGNR TETRALEC tool proved to be useful to unravel novel CLR/glycan interactions, an approach which could be applied to other CLRs.


Assuntos
Candida albicans/metabolismo , Citometria de Fluxo , Fragmentos Fc das Imunoglobulinas/química , Lectinas Tipo C/química , Proteínas Recombinantes de Fusão/química , Candida albicans/citologia , Fragmentos Fc das Imunoglobulinas/genética , Lectinas Tipo C/genética , Ligantes , Proteínas Recombinantes de Fusão/genética
10.
Chemistry ; 25(64): 14659-14668, 2019 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-31469191

RESUMO

Chemical modification of pseudo-dimannoside ligands guided by fragment-based design allowed for the exploitation of an ammonium-binding region in the vicinity of the mannose-binding site of DC-SIGN, leading to the synthesis of a glycomimetic antagonist (compound 16) of unprecedented affinity and selectivity against the related lectin langerin. Here, the computational design of pseudo-dimannoside derivatives as DC-SIGN ligands, their synthesis, their evaluation as DC-SIGN selective antagonists, the biophysical characterization of the DC-SIGN/16 complex, and the structural basis for the ligand activity are presented. On the way to the characterization of this ligand, an unusual bridging interaction within the crystals shed light on the plasticity and potential secondary binding sites within the DC-SIGN carbohydrate recognition domain.

11.
J Biol Chem ; 292(6): 2485-2494, 2017 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-28028176

RESUMO

MsrPQ is a newly identified methionine sulfoxide reductase system found in bacteria, which appears to be specifically involved in the repair of periplasmic proteins oxidized by hypochlorous acid. It involves two proteins: a periplasmic one, MsrP, previously named YedY, carrying out the Msr activity, and MsrQ, an integral b-type heme membrane-spanning protein, which acts as the specific electron donor to MsrP. MsrQ, previously named YedZ, was mainly characterized by bioinformatics as a member of the FRD superfamily of heme-containing membrane proteins, which include the NADPH oxidase proteins (NOX/DUOX). Here we report a detailed biochemical characterization of the MsrQ protein from Escherichia coli We optimized conditions for the overexpression and membrane solubilization of an MsrQ-GFP fusion and set up a purification scheme allowing the production of pure MsrQ. Combining UV-visible spectroscopy, heme quantification, and site-directed mutagenesis of histidine residues, we demonstrated that MsrQ is able to bind two b-type hemes through the histidine residues conserved between the MsrQ and NOX protein families. In addition, we identify the E. coli flavin reductase Fre, which is related to the dehydrogenase domain of eukaryotic NOX enzymes, as an efficient cytosolic electron donor to the MsrQ heme moieties. Cross-linking experiments as well as surface Plasmon resonance showed that Fre interacts with MsrQ to form a specific complex. Taken together, these data support the identification of the first prokaryotic two-component protein system related to the eukaryotic NOX family and involved in the reduction of periplasmic oxidized proteins.


Assuntos
Escherichia coli/enzimologia , Metionina Sulfóxido Redutases/metabolismo , NADPH Oxidases/metabolismo , Sequência de Aminoácidos , Transporte de Elétrons , Proteínas de Fluorescência Verde/genética , Metionina Sulfóxido Redutases/química , Metionina Sulfóxido Redutases/genética , Mutagênese Sítio-Dirigida , Homologia de Sequência de Aminoácidos , Espectrofotometria Ultravioleta , Ressonância de Plasmônio de Superfície
12.
Chemistry ; 24(54): 14448-14460, 2018 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-29975429

RESUMO

A library of mannose- and fucose-based glycomimetics was synthesized and screened in a microarray format against a set of C-type lectin receptors (CLRs) that included DC-SIGN, DC-SIGNR, langerin, and dectin-2. Glycomimetic ligands able to interact with dectin-2 were identified for the first time. Comparative analysis of binding profiles allowed their selectivity against other CLRs to be probed.

13.
Bioorg Med Chem ; 25(19): 5142-5147, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28389114

RESUMO

The synthesis and conformational analysis of pseudo-thio-1,2-dimannoside are described. This molecule mimics mannobioside (Manα(1,2)Man) and is an analog of pseudo-1,2-dimannoside, with expected increased stability to enzymatic hydrolysis. A short and efficient synthesis was developed based on an epoxide ring-opening reaction by a mannosyl thiolate, generated in situ from the corresponding thioacetate. NMR-NOESY studies supported by MM3∗ calculations showed that the pseudo-thio-1,2-dimannoside shares the conformational behavior of the pseudo-1,2-dimannoside and is a structural mimic of the natural disaccharide. Its affinity for DC-SIGN was measured by SPR and found to be comparable to the corresponding O-linked analog, offering good opportunities for further developments.


Assuntos
Moléculas de Adesão Celular/antagonistas & inibidores , Lectinas Tipo C/antagonistas & inibidores , Manosídeos/química , Manosídeos/farmacologia , Receptores de Superfície Celular/antagonistas & inibidores , Moléculas de Adesão Celular/metabolismo , Desenho de Fármacos , Humanos , Lectinas Tipo C/metabolismo , Modelos Moleculares , Receptores de Superfície Celular/metabolismo , Ressonância de Plasmônio de Superfície , Tioglicosídeos/química , Tioglicosídeos/farmacologia
14.
Biophys J ; 108(3): 666-77, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25650933

RESUMO

Langerin, a trimeric C-type lectin specifically expressed in Langerhans cells, has been reported to be a pathogen receptor through the recognition of glycan motifs by its three carbohydrate recognition domains (CRD). In the context of HIV-1 (human immunodeficiency virus-1) transmission, Langerhans cells of genital mucosa play a protective role by internalizing virions in Birbeck Granules (BG) for elimination. Langerin (Lg) is directly involved in virion binding and BG formation through its CRDs. However, nothing is known regarding the mechanism of langerin assembly underlying BG formation. We investigated at the molecular level the impact of two CRD mutations, W264R and F241L, on langerin structure, function, and BG assembly using a combination of biochemical and biophysical approaches. Although the W264R mutation causes CRD global unfolding, the F241L mutation does not affect the overall structure and gp120 (surface HIV-1 glycoprotein of 120 kDa) binding capacities of isolated Lg-CRD. In contrast, this mutation induces major functional and structural alterations of the whole trimeric langerin extracellular domain (Lg-ECD). As demonstrated by small-angle x-ray scattering comparative analysis of wild-type and mutant forms, the F241L mutation perturbs the oligomerization state and the global architecture of Lg-ECD. Correlatively, despite conserved intrinsic lectin activity of the CRD, avidity property of Lg-ECD is affected as shown by a marked decrease of gp120 binding. Beyond the change of residue itself, the F241L mutation induces relocation of the K200 side chain also located within the interface between protomers of trimeric Lg-ECD, thereby explaining the defective oligomerization of mutant Lg. We conclude that not only functional CRDs but also their correct spatial presentation are critical for BG formation as well as gp120 binding.


Assuntos
Antígenos CD/química , Grânulos Citoplasmáticos/metabolismo , Lectinas Tipo C/química , Lectinas de Ligação a Manose/química , Multimerização Proteica , Animais , Antígenos CD/metabolismo , Linhagem Celular , Cromatografia Líquida de Alta Pressão , Reagentes de Ligações Cruzadas/farmacologia , Cristalografia por Raios X , Fibroblastos/metabolismo , Fibroblastos/ultraestrutura , Proteína gp120 do Envelope de HIV/metabolismo , Humanos , Lectinas Tipo C/metabolismo , Mananas/metabolismo , Lectinas de Ligação a Manose/metabolismo , Camundongos , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutação/genética , Ligação Proteica/efeitos dos fármacos , Multimerização Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína , Espalhamento a Baixo Ângulo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Transfecção
15.
JACS Au ; 4(2): 697-712, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38425910

RESUMO

The evaluation of Bacteroides vulgatus mpk (BVMPK) lipopolysaccharide (LPS) recognition by DC-SIGN, a key lectin in mediating immune homeostasis, has been here performed. A fine chemical dissection of BVMPK LPS components, attained by synthetic chemistry combined to spectroscopic, biophysical, and computational techniques, allowed to finely map the LPS epitopes recognized by DC-SIGN. Our findings reveal BVMPK's role in immune modulation via DC-SIGN, targeting both the LPS O-antigen and the core oligosaccharide. Furthermore, when framed within medical chemistry or drug design, our results could lead to the development of tailored molecules to benefit the hosts dealing with inflammatory diseases.

16.
Chem Commun (Camb) ; 58(86): 12086-12089, 2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36219150

RESUMO

Selective DC-SIGN targeting vs. langerin might lead to anti-infective agents, given their counteracting effects upon infection by some pathogens. Here we show that multivalent sp2-iminosugar-containing mannobioside analogs can achieve total DC-SIGN selectivity by levering the canonic binding mode towards high-mannose oligosaccharide ligands, behaving as factual biomimics.


Assuntos
Biomimética , Lectinas de Ligação a Manose , Lectinas de Ligação a Manose/metabolismo , Antígenos CD/metabolismo , Sítios de Ligação , Lectinas Tipo C/metabolismo , Ligação Proteica
17.
J Biol Chem ; 285(37): 28980-90, 2010 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-20592030

RESUMO

The p47(phox) cytosolic factor from neutrophilic NADPH oxidase has always been resistant to crystallogenesis trials due to its modular organization leading to relative flexibility. Hydrogen/deuterium exchange coupled to mass spectrometry was used to obtain structural information on the conformational mechanism that underlies p47(phox) activation. We confirmed a relative opening of the protein with exposure of the SH3 Src loops that are known to bind p22(phox) upon activation. A new surface was shown to be unmasked after activation, representing a potential autoinhibitory surface that may block the interaction of the PX domain with the membrane in the resting state. Within this surface, we identified 2 residues involved in the interaction with the PX domain. The double mutant R162A/D166A showed a higher affinity for specific phospholipids but none for the C-terminal part of p22(phox), reflecting an intermediate conformation between the autoinhibited and activated forms.


Assuntos
NADPH Oxidases/química , Neutrófilos/enzimologia , Substituição de Aminoácidos , Animais , Ativação Enzimática/fisiologia , Humanos , Mutação de Sentido Incorreto , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Estrutura Secundária de Proteína , Domínios de Homologia de src
18.
J Biol Chem ; 285(9): 6337-47, 2010 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-20026606

RESUMO

Accumulating evidence indicates that G protein-coupled receptors can assemble as dimers/oligomers but the role of this phenomenon in G protein coupling and signaling is not yet clear. We have used the purified leukotriene B(4) receptor BLT2 as a model to investigate the capacity of receptor monomers and dimers to activate the adenylyl cyclase inhibitory G(i2) protein. For this, we overexpressed the recombinant receptor as inclusion bodies in the Escherichia coli prokaryotic system, using a human alpha(5) integrin as a fusion partner. This strategy allowed the BLT2 as well as several other G protein-coupled receptors from different families to be produced and purified in large amounts. The BLT2 receptor was then successfully refolded to its native state, as measured by high-affinity LTB(4) binding in the presence of the purified G protein G alpha(i2). The receptor dimer, in which the two protomers displayed a well defined parallel orientation as assessed by fluorescence resonance energy transfer, was then separated from the monomer. Using two methods of receptor-catalyzed guanosine 5'-3-O-(thio)triphosphate binding assay, we clearly demonstrated that monomeric BLT2 stimulates the purified G alpha(i2) beta(1) gamma(2) protein more efficiently than the dimer. These data suggest that assembly of two BLT2 protomers into a dimer results in the reduced ability to signal.


Assuntos
Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Receptores do Leucotrieno B4/fisiologia , Transferência Ressonante de Energia de Fluorescência , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/química , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/isolamento & purificação , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Humanos , Integrina alfaV , Ligação Proteica , Multimerização Proteica , Transdução de Sinais
19.
J Drug Target ; 29(1): 99-107, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32936032

RESUMO

Liver is the main organ for metabolism but is also subject to various pathologies, from viral, genetic, cancer or metabolic origin. There is thus a crucial need to develop efficient liver-targeted drug delivery strategies. Asialoglycoprotein receptor (ASGPR) is a C-type lectin expressed in the hepatocyte plasma membrane that efficiently endocytoses glycoproteins exposing galactose (Gal) or N-acetylgalactosamine (GalNAc). Its targeting has been successfully used to drive the uptake of small molecules decorated with three or four GalNAc, thanks to an optimisation of their spatial arrangement. Herein, we assessed the biological properties of highly stable nanostructured lipid carriers (NLC) made of FDA-approved ingredients and formulated with increasing amounts of GalNAc. Cellular studies showed that a high density of GalNAc was required to favour hepatocyte internalisation via the ASGPR pathway. Interaction studies using surface plasmon resonance and the macrophage galactose-lectin as GalNAc-recognising lectin confirmed the need of high GalNAc density for specific recognition of these NLC. This work is the first step for the development of efficient nanocarriers for prolonged liver delivery of active compounds.


Assuntos
Acetilgalactosamina/metabolismo , Portadores de Fármacos/metabolismo , Endocitose/fisiologia , Hepatócitos/metabolismo , Lectinas/metabolismo , Nanoestruturas , Acetilgalactosamina/administração & dosagem , Portadores de Fármacos/administração & dosagem , Endocitose/efeitos dos fármacos , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Humanos , Lipídeos/administração & dosagem , Nanoestruturas/administração & dosagem
20.
ACS Chem Biol ; 16(11): 2547-2559, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34550690

RESUMO

MsrPQ is a new type of methionine sulfoxide reductase (Msr) system found in bacteria. It is specifically involved in the repair of periplasmic methionine residues that are oxidized by hypochlorous acid. MsrP is a periplasmic molybdoenzyme that carries out the Msr activity, whereas MsrQ, an integral membrane-bound hemoprotein, acts as the physiological partner of MsrP to provide electrons for catalysis. Although MsrQ (YedZ) was associated since long with a protein superfamily named FRD (ferric reductase domain), including the eukaryotic NADPH oxidases and STEAP proteins, its biochemical properties are still sparsely documented. Here, we have investigated the cofactor content of the E. coli MsrQ and its mechanism of reduction by the flavin reductase Fre. We showed by electron paramagnetic resonance (EPR) spectroscopy that MsrQ contains a single highly anisotropic low-spin (HALS) b-type heme located on the periplasmic side of the membrane. We further demonstrated that MsrQ holds a flavin mononucleotide (FMN) cofactor that occupies the site where a second heme binds in other members of the FDR superfamily on the cytosolic side of the membrane. EPR spectroscopy indicates that the FMN cofactor can accommodate a radical semiquinone species. The cytosolic flavin reductase Fre was previously shown to reduce the MsrQ heme. Here, we demonstrated that Fre uses the FMN MsrQ cofactor as a substrate to catalyze the electron transfer from cytosolic NADH to the heme. Formation of a specific complex between MsrQ and Fre could favor this unprecedented mechanism, which most likely involves transfer of the reduced FMN cofactor from the Fre active site to MsrQ.


Assuntos
Enzimas/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Proteínas de Membrana/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Mononucleotídeo de Flavina/metabolismo , Cinética , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA