Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Small ; 20(40): e2401051, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38809083

RESUMO

Lead-free layered double perovskite nanocrystals (NCs), i.e., Cs4M(II)M(III)2Cl12, have recently attracted increasing attention for potential optoelectronic applications due to their low toxicity, direct bandgap nature, and high structural stability. However, the low photoluminescence quantum yield (PLQY, <1%) or even no observed emissions at room temperature have severely blocked the further development of this type of lead-free halide perovskites. Herein, two new layered perovskites, Cs4CoIn2Cl12 (CCoI) and Cs4ZnIn2Cl12 (CZnI), are successfully synthesized at the nanoscale based on previously reported Cs4CuIn2Cl12 (CCuI) NCs, by tuning the M(II) site with different transition metal ions for lattice tailoring. Benefiting from the formation of more self-trapped excitons (STEs) in the distorted lattices, CCoI and CZnI NCs exhibit significantly strengthened STE emissions toward white light compared to the case of almost non-emissive CCuI NCs, by achieving PLQYs of 4.3% and 11.4% respectively. The theoretical and experimental results hint that CCoI and CZnI NCs possess much lower lattice deformation energies than that of reference CCuI NCs, which are favorable for the recombination of as-formed STEs in a radiative way. This work proposes an effective strategy of lattice engineering to boost the photoluminescent properties of lead-free layered double perovskites for their future warm white light-emitting applications.

2.
Small ; 19(46): e2303575, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37452442

RESUMO

The perovskite-inspired Cu2 AgBiI6 (CABI) material has been gaining increasing momentum as photovoltaic (PV) absorber due to its low toxicity, intrinsic air stability, direct bandgap, and a high absorption coefficient in the range of 105  cm-1 . However, the power conversion efficiency (PCE) of existing CABI-based PVs is still seriously constrained by the presence of both intrinsic and surface defects. Herein, antimony (III) (Sb3+ ) is introduced into the octahedral lattice sites of the CABI structure, leading to CABI-Sb with larger crystalline domains than CABI. The alloying of Sb3+ with bismuth (III) (Bi3+ ) induces changes in the local structural symmetry that dramatically increase the formation energy of intrinsic defects. Light-intensity dependence and electron impedance spectroscopic studies show reduced trap-assisted recombination in the CABI-Sb PV devices. CABI-Sb solar cells feature a nearly 40% PCE enhancement (from 1.31% to 1.82%) with respect to the CABI devices mainly due to improvement in short-circuit current density. This work will promote future compositional design studies to enhance the intrinsic defect tolerance of next-generation wide-bandgap absorbers for high-performance and stable PVs.

3.
Nano Lett ; 22(1): 311-318, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34939808

RESUMO

Lead-based halide perovskite nanocrystals (NCs) are recognized as emerging emissive materials with superior photoluminescence (PL) properties. However, the toxicity of lead and the swift chemical decomposition under atmospheric moisture severely hinder their commercialization process. Herein, we report the first colloidal synthesis of lead-free Cs4CuIn2Cl12 layered double perovskite NCs via a facile moisture-assisted hot-injection method stemming from relatively nontoxic precursors. Although moisture is typically detrimental to NC synthesis, we demonstrate that the presence of water molecules in Cs4CuIn2Cl12 synthesis enhances the PL quantum yield (mainly in the near-UV range), induces a morphological transformation from 3D nanocubes to 2D nanoplatelets, and converts the dark transitions to radiative transitions for the observed self-trapped exciton relaxation. This work paves the way for further studies on the moisture-assisted synthesis of novel lead-free halide perovskite NCs for a wide range of applications.

4.
Nano Lett ; 22(11): 4437-4444, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35609011

RESUMO

CsPbBr3 nanocrystals (NCs) passivated by conventional lipophilic capping ligands suffer from colloidal and optical instability under ambient conditions, commonly due to the surface rearrangements induced by the polar solvents used for the NC purification steps. To avoid onerous postsynthetic approaches, ascertained as the only viable stability-improvement strategy, the surface passivation paradigms of as-prepared CsPbBr3 NCs should be revisited. In this work, the addition of an extra halide source (8-bromooctanoic acid) to the typical CsPbBr3 synthesis precursors and surfactants leads to the in situ formation of a zwitterionic ligand already before cesium injection. As a result, CsPbBr3 NCs become insoluble in nonpolar hexane, with which they can be washed and purified, and form stable colloidal solutions in a relatively polar medium (dichloromethane), even when longly exposed to ambient conditions. The improved NC stability stems from the effective bidentate adsorption of the zwitterionic ligand on the perovskite surfaces, as supported by theoretical investigations. Furthermore, the bidentate functionalization of the zwitterionic ligand enables the obtainment of blue-emitting perovskite NCs with high PLQYs by UV-irradiation in dichloromethane, functioning as the photoinduced chlorine source.

5.
Small ; 18(35): e2203768, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35808963

RESUMO

Lead-free perovskite-inspired materials (PIMs) are gaining attention in optoelectronics due to their low toxicity and inherent air stability. Their wide bandgaps (≈2 eV) make them ideal for indoor light harvesting. However, the investigation of PIMs for indoor photovoltaics (IPVs) is still in its infancy. Herein, the IPV potential of a quaternary PIM, Cu2 AgBiI6 (CABI), is demonstrated upon controlling the film crystallization dynamics via additive engineering. The addition of 1.5 vol% hydroiodic acid (HI) leads to films with improved surface coverage and large crystalline domains. The morphologically-enhanced CABI+HI absorber leads to photovoltaic cells with a power conversion efficiency of 1.3% under 1 sun illumination-the highest efficiency ever reported for CABI cells and of 4.7% under indoor white light-emitting diode lighting-that is, within the same range of commercial IPVs. This work highlights the great potential of CABI for IPVs and paves the way for future performance improvements through effective passivation strategies.

6.
Small ; 17(19): e2100101, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33792184

RESUMO

The doping of halide perovskite nanocrystals (NCs) with manganese cations (Mn2+ ) has recently enabled enhanced stability, novel optical properties, and modulated charge carrier dynamics of the NCs host. However, the influence of Mn doping on the synthetic routes and the band structures of the host has not yet been elucidated. Herein, it is demonstrated that Mn doping promotes a facile, safe, and low-hazard path toward the synthesis of ternary Cs3 Bi2 I9 NCs by effectively inhibiting the impurity phase (i.e., CsI) resulting from the decomposition of the intermediate Cs3 BiI6 product. Furthermore, it is observed that the deepening of the valence band level of the host NCs upon doping at Mn concentration levels varying from 0 to 18.5% (atomic ratio) with respect to the Bi content. As a result, the corresponding Mn-doped NCs solar cells show a higher open-circuit voltage and longer electron lifetime than those employing the undoped perovskite NCs. This work opens new insights on the role of Mn doping in the synthetic route and optoelectronic properties of lead-free halide perovskite NCs for still unexplored applications.

7.
Angew Chem Int Ed Engl ; 59(49): 22117-22125, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32816348

RESUMO

Colloidal lead-free perovskite nanocrystals have recently received extensive attention because of their facile synthesis, the outstanding size-tunable optoelectronic properties, and less or no toxicity in their commercial applications. Tin (Sn) has so far led to the most efficient lead-free solar cells, yet showing highly unstable characteristics in ambient conditions. Here, we propose the synthesis of all-inorganic mixture Sn-Ge perovskite nanocrystals, demonstrating the role of Ge2+ in stabilizing Sn2+ cation while enhancing the optical and photophysical properties. The partial replacement of Sn atoms by Ge atoms in the nanostructures effectively fills the high density of Sn vacancies, reducing the surface traps and leading to a longer excitonic lifetime and increased photoluminescence quantum yield. The resultant Sn-Ge nanocrystals-based devices show the highest efficiency of 4.9 %, enhanced by nearly 60 % compared to that of pure Sn nanocrystals-based devices.

8.
Small ; 15(28): e1900801, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31012274

RESUMO

Colloidal perovskite nanocrystals (PNCs) combine the outstanding optoelectronic properties of bulk perovskites with strong quantum confinement effects at the nanoscale. Their facile and low-cost synthesis, together with superior photoluminescence quantum yields and exceptional optical versatility, make PNCs promising candidates for next-generation optoelectronics. However, this field is still in its early infancy and not yet ready for commercialization due to several open challenges to be addressed, such as toxicity and stability. Here, the key synthesis strategies and the tunable optical properties of PNCs are discussed. The photophysical underpinnings of PNCs, in correlation with recent developments of PNC-based optoelectronic devices, are especially highlighted. The final goal is to outline a theoretical scaffold for the design of high-performance devices that can at the same time address the commercialization challenges of PNC-based technology.

9.
Phys Chem Chem Phys ; 21(27): 14663-14670, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31215557

RESUMO

Perovskites have lately attracted a lot of attention as promising materials for the next-generation of efficient, low-cost, and solution processable optoelectronics. Their complex transient photophysics, in time scales ranging from femtoseconds to seconds, have been widely investigated. However, in most of the reported works the spectral window of ultrafast transient absorption (TA) spectroscopy of perovskite films is limited to the visible region, hence missing crucial information coming from the near-infrared (NIR). Furthermore, the measured TA responses are affected by light interference in a thin perovskite layer making data interpretation a challenge even in the visible part of the spectrum. Here, we demonstrate a method that allows us to separately obtain the changes in absorption and refractive index from conventional transmission and reflection pump-probe measurements. We show that the contribution of the absorption change to the response of metal halide perovskite thin films in the NIR is much smaller than that of the refractive index change. Furthermore, the spectral shape of TA responses in the NIR range is predominantly determined by perovskite layer thickness and its refractive index. However, the time profile of the responses bears important information on the carrier dynamics and makes the NIR a useful range to study perovskite photophysics.

10.
Chemphyschem ; 18(1): 64-71, 2017 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-27805802

RESUMO

The preparation of weblike titanium dioxide thin films by atomic layer deposition on cellulose biotemplates is reported. The method produces a TiO2 web, which is flexible and transferable from the deposition substrate to that of the end application. Removal of the cellulose template by calcination converts the amorphous titania to crystalline anatase and gives the structure a hollow morphology. The TiO2 webs are thoroughly characterized using electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy to give new insight into manufacturing of porous titanium dioxide structures by means of template-based methods. Functionality and integrity of the TiO2 hollow weblike thin films were successfully confirmed by applying them as electrodes in dye-sensitized solar cells.

11.
Chemistry ; 22(4): 1501-10, 2016 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-26632758

RESUMO

Terpyridine-substituted perylenes containing cyclic anhydrides in the peri position were synthesized. The anhydride group served as an anchor for assembly of the terpyridyl-crowned chromophores as monomolecular layers on metal oxide surfaces. Further coordination with Zn(2+) ions allowed for layer-by-layer formation of supramolecular assemblies of perylene imides on the solid substrates. With properly selected anchor and linker molecules it was possible to build high quality structures of greater than ten successive layers by a simple and straightforward procedure. The prepared films were stable and had a broad spectral coverage and high absorbance. To demonstrate their potential use, the synthesized dyes were employed in solid-state dye-sensitized solar cells, and electron injection from the perylene antennas to titanium dioxide was observed.

12.
J Org Chem ; 81(4): 1535-46, 2016 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-26771655

RESUMO

The benzothiadiazole moiety has been extensively exploited as a building block in the syntheses of efficient organic semiconducting materials during the past decade. In this paper, parallel synthetic routes to benzothiadiazole derivatives, inspired by previous computational findings, are reported. The results presented here show that various C-C cross-couplings of benzothiadiazole, thiophene, and thiazole derivatives can be efficiently performed by applying Xantphos as a ligand of the catalyst system. Moreover, improved and convenient methods to synthesize important chemical building blocks, e.g., 4,7-dibromo-2,1,3-benzothiadiazole, in good to quantitative yields are presented. Additionally, the feasibility of Suzuki-Miyaura and direct coupling methods are compared in the synthesis of target benzothiadiazole derivatives. The computational characterization of the prepared benzothiadiazole derivatives shows that these compounds have planar molecular backbones and the possibility of intramolecular charge transfer upon excitation. The experimental electrochemical and spectroscopic studies reveal that although the compounds have similar electronic and optical properties in solution, they behave differently in solid state due to the different alkyl side-group substitutions in the molecular backbone. These benzothiadiazole derivatives can be potentially used as building blocks in the construction of more advanced small molecule organic semiconductors with acceptor-donor-acceptor motifs.

13.
Nanoscale ; 16(6): 2852-2859, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38231157

RESUMO

We introduce the use of correlative third-harmonic generation and multiphoton-induced luminescence microscopy to investigate the impact of manganese (Mn) doping on bismuth (Bi)-based perovskite-inspired nanocrystal thin films. The technique was found to be extremely sensitive to the microscopic features of the perovskite film and its structural compositions, allowing the unambiguous detection of compositionally different emitters in the perovskite film and manipulation of their nonlinear optical responses. Our work unveils a new way to investigate, manipulate, and exploit perovskite-inspired functional materials for nonlinear optical conversion at the nanoscale.

14.
R Soc Open Sci ; 11(9): 241012, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39263454

RESUMO

This work demonstrates that unetched substrates can be reliably used in perovskite solar cell (PSC) fabrication. Chemical etching and laser patterning of the bottom electrodes are time- and resource-consuming processes. In particular, when testing novel conductive substrate materials, such as metallic or bio-based substrates, etching or patterning could be entirely unfeasible or could require significant process optimization. Avoiding these steps could accelerate research on PSCs, yet the literature shows no attempts to override these steps. Here, PSCs were fabricated and characterized using three-dimensionally printed holders with spring-loaded pins. We show that devices made on unetched substrates have, on average, a similar performance to those made on etched substrates (16 ± 1% and 16.0 ± 0.7%, respectively). Our study provides a new strategy for fabricating PSCs, particularly when etching and laser patterning are impractical.

15.
J Phys Chem C Nanomater Interfaces ; 128(23): 9446-9453, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38894751

RESUMO

Perovskite-inspired materials (PIMs) provide low-toxicity and air-stable photo-absorbers for several possible optoelectronic devices. In this context, the pnictogen-based halides Cu2AgBiI6 (CABI) are receiving increasing attention in photovoltaics. Despite extensive studies on power conversion efficiency and shelf-life stability, nearly no attention has been given to the physicochemical properties of the interface between CABI and the hole transport layer (HTL), which can strongly impact overall cell operations. Here, we address this specific interface with three polymeric HTLs: poly(N,N'-bis(4-butylphenyl)-N,N'-bis(phenyl)benzidine) (poly-TPD), thiophene-(poly(3-hexylthiophene)) (P3HT), and poly(bis(4-phenyl)(2,4,6-trimethylphenyl)amine) (PTAA). Our findings reveal that devices fabricated with poly-TPD and P3HT outperform the commonly used Spiro-OMeTAD in terms of device operational stability, while PTAA exhibits worse performances. Density functional theory calculations unveil the electronic and chemical interactions at the CABI-HTL interfaces, providing new insights into observed experimental behaviors. Our study highlights the importance of addressing the buried interfaces in PIM-based devices to enhance their overall performance and stability.

16.
iScience ; 27(10): 110924, 2024 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-39346676

RESUMO

The photocatalytic reduction of carbon dioxide (CO2) into multi-electron carbon products remains challenging due to the inherent stability of CO2 and slow multi-electron transfer kinetics. Here in, we synthesized a hybrid material, cesium copper halide (Cs3Cu2I5) intercalated onto two-dimensional (2D) cobalt-based zeolite framework (ZIF-9-III) nanosheets (denoted as Cs3Cu2I5@ZIF-1) through a simple mechanochemical grinding. The synergy in the hybrid effectively reduces CO2 to carbon monoxide (CO) at 110 µmol/g/h and methane at 5 µmol/g/h with high selectivity, suppressing hydrogen evolution. Further, we have investigated additional Cs3Cu2I5@ZIF hybrids with varying ZIF-9-III amounts, confirming their selective CO2 reduction to methane over hydrogen. Density functional theory (DFT) calculations reveal a non-covalent interaction between Cs3Cu2I5 and ZIF-9-III, with electron transfer suggesting potential for improved photocatalysis.

17.
Artigo em Inglês | MEDLINE | ID: mdl-38660951

RESUMO

In recent years, colloidal lead halide perovskite (LHP) nanocrystals (NCs) have exhibited such intriguing light absorption properties to be contemplated as promising candidates for photocatalytic conversions. However, for effective photocatalysis, the light harvesting system needs to be stable under the reaction conditions propaedeutic to a specific transformation. Unlike photoinduced oxidative reaction pathways, photoreductions with LHP NCs are challenging due to their scarce compatibility with common hole scavengers like amines and alcohols. In this contribution, it is investigated the potential of CsPbBr3 NCs protected by a suitably engineered bidentate ligand for the photoreduction of quinone species. Using an in situ approach for the construction of the passivating agent and a halide excess environment, quantum-confined nanocubes (average edge length = 6.0 ± 0.8 nm) are obtained with a low ligand density (1.73 ligand/nm2) at the NC surface. The bifunctional adhesion of the engineered ligand boosts the colloidal stability of the corresponding NCs, preserving their optical properties also in the presence of an amine excess. Despite their relatively short exciton lifetime (τAV = 3.7 ± 0.2 ns), these NCs show an efficient fluorescence quenching in the presence of the selected electron accepting quinones (1,4-naphthoquinone, 9,10-phenanthrenequinone, and 9,10-anthraquinone). All of these aspects demonstrate the suitability of the NCs for an efficient photoreduction of 1,4-naphthoquinone to 1,4-dihydroxynaphthalene in the presence of triethylamine as a hole scavenger. This chemical transformation is impracticable with conventionally passivated LHP NCs, thereby highlighting the potential of the surface functionalization in this class of nanomaterials for exploring new photoinduced reactivities.

18.
ACS Catal ; 14(9): 6603-6622, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38721375

RESUMO

Photoelectrochemical water splitting and CO2 reduction provide an attractive route to produce solar fuels while reducing the level of CO2 emissions. Metal halide perovskites (MHPs) have been extensively studied for this purpose in recent years due to their suitable optoelectronic properties. In this review, we survey the recent achievements in the field. After a brief introduction to photoelectrochemical (PEC) processes, we discussed the properties, synthesis, and application of MHPs in this context. We also survey the state-of-the-art findings regarding significant achievements in performance, and developments in addressing the major challenges of toxicity and instability toward water. Efforts have been made to replace the toxic Pb with less toxic materials like Sn, Ge, Sb, and Bi. The stability toward water has been also improved by using various methods such as compositional engineering, 2D/3D perovskite structures, surface passivation, the use of protective layers, and encapsulation. In the last part, considering the experience gained in photovoltaic applications, we provided our perspective for the future challenges and opportunities. We place special emphasis on the improvement of stability as the major challenge and the potential contribution of machine learning to identify the most suitable formulation for halide perovskites with desired properties.

19.
ACS Appl Mater Interfaces ; 16(15): 19026-19038, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38569595

RESUMO

Cu2AgBiI6 (CABI) is a promising perovskite-inspired absorber for solar cells due to its direct band gap and high absorption coefficient. However, the nonradiative recombination caused by the high extrinsic trap density limits the performance of CABI-based solar cells. In this work, we employ halide engineering by doping bromide anions (Br-) in CABI thin films, in turn significantly improving the power conversion efficiency (PCE). By introducing Br- in the synthetic route of CABI thin films, we identify the optimum composition as CABI-10Br (with 10% Br at the halide site). The tailored composition appears to reduce the deep trap density as shown by time-resolved photoluminescence and transient absorption spectroscopy characterizations. This leads to a dramatic increase in the lifetime of charge carriers, which therefore improves both the external quantum efficiency and the integrated short-circuit current. The photovoltaic performance shows a significant boost since the PCE under standard 1 sun illumination increases from 1.32 to 1.69% (∼30% relative enhancement). Systematic theoretical and experimental characterizations were employed to investigate the effect of Br- incorporation on the optoelectronic properties of CABI. Our results highlight the importance of mitigating trap states in lead-free perovskite-inspired materials and that Br- incorporation at the halide site is an effective strategy for improving the device performance.

20.
Chem Mater ; 35(21): 9444, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38027544

RESUMO

[This corrects the article DOI: 10.1021/acs.chemmater.3c01629.].

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA