Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 356: 120646, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38531137

RESUMO

In regions with intensive livestock production, managing the environmental impact of manure is a critical challenge. This study, set in Flanders (Belgium), evaluates the effectiveness of integrating process intensification measures into the treatment of piggery manure to mitigate nitrogen (N) surplus issues. The research investigates the techno-economic benefits of implementing three key interventions: pure oxygen (PO) aeration, ammonia (NH3) stripping-scrubbing (SS) pretreatment, and tertiary treatment using constructed wetlands (CW), within the conventional nitrification-denitrification (NDN) process. Conducted at a full-scale pig manure treatment facility, our analysis employs steady-state mass balances for N and phosphorus (P) to assess the impact of these process intensification strategies. Findings indicate that the incorporation of advanced treatment steps significantly enhances the efficiency and cost-effectiveness of the manure management system. Specifically, the application of PO aeration is shown to reduce overall treatment costs by nearly 4%, while the addition of an NH3 SS unit further decreases expenses by 1-2%, depending on the counter acid utilized. Moreover, the implementation of a CW contributes an additional 4% in cost savings. Collectively, these measures offer substantial improvements in processing capacity, reduction of by-product disposal costs, and generation of additional revenue from high-quality fertilising products. The study highlights the potential of advanced treatment technologies to provide economically viable and environmentally sustainable solutions for manure management in livestock-dense regions, emphasizing the cumulative economic benefit of a holistic approach to process intensification (10%).


Assuntos
Esterco , Nitrogênio , Suínos , Animais , Nitrogênio/análise , Análise Custo-Benefício , Amônia/análise , Oxigênio
2.
J Environ Manage ; 345: 118500, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37542810

RESUMO

Microalgae can play a key role in the bioeconomy, particularly in combination with the valorisation of waste streams as cultivation media. Urine is an example of a widely available nutrient-rich waste stream, and alkaline stabilization and subsequent full nitrification in a bioreactor yields a stable nitrate-rich solution. In this study, such nitrified urine served as a culture medium for the edible microalga Limnospira indica. In batch cultivation, nitrified urine without additional supplements yielded a lower biomass concentration, nutrient uptake and protein content compared to modified Zarrouk medium, as standard medium. To enhance the nitrogen uptake efficiency and biomass production, nitrified urine was supplemented with potentially limiting elements. Limited amounts of phosphorus (36 mg L-1), magnesium (7.9 mg L-1), calcium (12.2 mg L-1), iron (2.0 mg L-1) and EDTA (88.5 mg Na2-EDTA.2H2O L-1) rendered the nitrified urine matrix as effective as modified Zarrouk medium in terms of biomass production (OD750 of 1.2), nutrient uptake (130 mg N L-1) and protein yield (47%) in batch culture. Urine precipitates formed by alkalinisation could in principle supply enough phosphorus, calcium and magnesium, requiring only external addition of iron, EDTA and inorganic carbon. Subsequently, the suitability of supplemented nitrified urine as a culture medium was confirmed in continuous Limnospira cultivation in a CSTR photobioreactor. This qualifies nitrified urine as a valuable and sustainable microalgae growth medium, thereby creating novel nutrient loops on Earth and in Space, i.e., in regenerative life support systems for human deep-space missions.


Assuntos
Microalgas , Humanos , Microalgas/metabolismo , Cálcio/metabolismo , Ácido Edético/metabolismo , Magnésio , Nutrientes , Fotobiorreatores , Fósforo/metabolismo , Suplementos Nutricionais , Biomassa , Nitrogênio/metabolismo
3.
Environ Sci Technol ; 55(12): 8278-8286, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34085818

RESUMO

Purple non-sulfur bacteria (PNSB) show potential for microbial protein production on wastewater as animal feed. They offer good selectivity (i.e., low microbial diversity and high abundance of one species) when grown anaerobically in the light. However, the cost of closed anaerobic photobioreactors is prohibitive for protein production. Although open raceway reactors are cheaper, their feasibility to selectively grow PNSB is thus far unexplored. This study developed operational strategies to boost PNSB abundance in the biomass of a raceway reactor fed with volatile fatty acids. For a flask reactor run at a 2 day sludge retention time (SRT), matching the chemical oxygen demand (COD) loading rate to the removal rate in the light period prevented substrate availability during the dark period and increased the PNSB abundance from 50-67 to 88-94%. A raceway reactor run at a 2 day SRT showed an increased PNSB abundance from 14 to 56% when oxygen supply was reduced (no stirring at night). The best performance was achieved at the highest surface-to-volume ratio (10 m2 m-3 increased light availability) showing productivities up to 0.2 g protein L-1 day-1 and a PNSB abundance of 78%. This study pioneered in PNSB-based microbial protein production in raceway reactors, yielding high selectivity while avoiding the combined availability of oxygen, COD, and darkness.


Assuntos
Proteobactérias , Águas Residuárias , Análise da Demanda Biológica de Oxigênio , Reatores Biológicos , Fotobiorreatores , Esgotos
4.
Environ Sci Technol ; 55(12): 8287-8298, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34086451

RESUMO

Urine is a valuable resource for nutrient recovery. Stabilization is, however, recommended to prevent urea hydrolysis and the associated risk for ammonia volatilization, uncontrolled precipitation, and malodor. This can be achieved by alkalinization and subsequent biological conversion of urea and ammonia into nitrate (nitrification) and organics into CO2. Yet, without pH control, the extent of nitrification is limited as a result of insufficient alkalinity. This study explored the feasibility of an integrated electrochemical cell to obtain on-demand hydroxide production through water reduction at the cathode, compensating for the acidification caused by nitritation, thereby enabling full nitrification. To deal with the inherent variability of the urine influent composition and bioprocess, the electrochemical cell was steered via a controller, modulating the current based on the pH in the bioreactor. This provided a reliable and innovative alternative to base addition, enabling full nitrification while avoiding the use of chemicals, the logistics associated with base storage and dosing, and the associated increase in salinity. Moreover, the electrochemical cell could be used as an in situ extraction and concentration technology, yielding an acidic concentrated nitrate-rich stream. The make-up of the end product could be tailored by tweaking the process configuration, offering versatility for applications on Earth and in space.


Assuntos
Nitratos , Nitrificação , Amônia , Reatores Biológicos , Concentração de Íons de Hidrogênio , Nitrogênio
5.
J Environ Manage ; 298: 113447, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34426213

RESUMO

Water quality standards (WQS) set the legal definition for safe and desirable water. WQS impose regulatory concentration limits to act as a jurisdiction-specific legislative risk-management tool. Despite its importance in shaping a universal definition of safe, clean water, little information exists with respect to (dis)similarity of chemical WQS worldwide. Therefore, this paper compares chemical WQS for drinking and surface water matrices in eight jurisdictions representing a global geographic distribution: Australia, Brazil, Canada, China, the European Union, the region of Flanders in Belgium, the United States of America, and South Africa. The World Health Organization's list is used as a reference for drinking water standards. Sørensen-Dice indices (SDI) showed little qualitative similarity in the compounds that are regulated in drinking water (median SDI = 40%) and surface water (median SDI = 33%), indicating that the heterogeneity within a matrix is substantial at the level of the standard. Quantitative similarity for matching standards was higher than the qualitative per Kendall correlation (median = 0.73 and 0.58 for drinking water and surface water respectively), yet variance observed within standards remained inexplicably high for organic compounds. Variations in WQS were more pronounced for organic compounds. Most differences cannot be easily explained from a toxicological or risk-based point-of-view. Historical development, ease of measurement, and (toxicological) knowledge gaps on the risk of a vast number of organic compounds are theorized to be the drivers. Therefore, this study argues for a more tailored, risk-based approach in which standards incorporated into water safety plans are dynamically set for compounds that are persistent and could pose a risk for human health and/or aquatic ecosystems. Global variations in WQS should therefore not necessarily be avoided but rather globally harmonized with enough flexibility to ensure a global, up-to-date definition of safe and desirable water everywhere.


Assuntos
Água Potável , Poluentes Químicos da Água , China , Ecossistema , Humanos , Compostos Orgânicos , Estados Unidos , Poluentes Químicos da Água/análise , Qualidade da Água , Abastecimento de Água
6.
Environ Sci Technol ; 54(9): 5822-5831, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32216296

RESUMO

Nitrite oxidizing bacteria (NOB) and nitrous oxide (N2O) hinder the development of mainstream partial nitritation/anammox. To overcome these, endogenous free ammonia (FA) and free nitrous acid (FNA), which can be produced in the sidestream, were used for return-sludge treatment for two integrated-film activated sludge reactors containing biomass in flocs and on carriers. The repeated exposure of biomass from one reactor to FA shocks had a limited impact on NOB suppression but inhibited anammox bacteria (AnAOB). In the other reactor, repeated FNA shocks to the separated flocs failed to limit the system's nitrate production since NOB activity was still high on the biofilms attached to the unexposed carriers. In contrast, the repeated FNA treatment of flocs and carriers favored aerobic ammonium-oxidizing bacteria (AerAOB) over NOB activity with AnAOB negligibly affected. It was further revealed that return-sludge treatment with higher FNA levels led to lower N2O emissions under similar effluent nitrite concentrations. On this basis, weekly 4 h FNA shocks of 2.0 mg of HNO2-N/L were identified as an optimal and realistic treatment, which not only enabled nitrogen removal efficiencies of ∼65% at nitrogen removal rates of ∼130 mg of N/L/d (20 °C) but also yielded the lowest cost and carbon footprint.


Assuntos
Ácido Nitroso , Esgotos , Reatores Biológicos , Nitratos , Nitritos , Nitrogênio , Oxirredução
7.
Environ Sci Technol ; 52(12): 6729-6742, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29772177

RESUMO

This critical review outlines a roadmap for the conversion of chemical oxygen demand (COD) contained in sewage to commodities based on three-steps: capture COD as sludge, ferment it to volatile fatty acids (VFA), and upgrade VFA to products. The article analyzes the state-of-the-art of this three-step approach and discusses the bottlenecks and challenges. The potential of this approach is illustrated for the European Union's 28 member states (EU-28) through Monte Carlo simulations. High-rate contact stabilization captures the highest amount of COD (66-86 g COD person equivalent-1 day-1 in 60% of the iterations). Combined with thermal hydrolysis, this would lead to a VFA-yield of 23-44 g COD person equivalent-1 day-1. Upgrading VFA generated by the EU-28 would allow, in 60% of the simulations, for a yearly production of 0.2-2.0 megatonnes of esters, 0.7-1.4 megatonnes of polyhydroxyalkanoates or 0.6-2.2 megatonnes of microbial protein substituting, respectively, 20-273%, 70-140% or 21-72% of their global counterparts (i.e., petrochemical-based esters, bioplastics or fishmeal). From these flows, we conclude that sewage has a strong potential as biorefinery feedstock, although research is needed to enhance capture, fermentation and upgrading efficiencies. These developments need to be supported by economic/environmental analyses and policies that incentivize a more sustainable management of our resources.


Assuntos
Poli-Hidroxialcanoatos , Esgotos , Análise da Demanda Biológica de Oxigênio , Reatores Biológicos , Ácidos Graxos Voláteis , Fermentação , Hidrólise
8.
Environ Sci Technol ; 52(15): 8725-8732, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-29787677

RESUMO

A key step toward energy-positive sewage treatment is the development of mainstream partial nitritation/anammox, a nitrogen removal technology where aerobic ammonium-oxidizing bacteria (AerAOB) are desired, while nitrite-oxidizing bacteria (NOB) are not. To suppress NOB, a novel return-sludge treatment was investigated. Single and combined effects of sulfide (0-600 mg S L-1), anaerobic starvation (0-8 days), and a free ammonia (FA) shock (30 mg FA-N L-1 for 1 h) were tested for immediate effects and long-term recovery. AerAOB and NOB were inhibited immediately and proportionally by sulfide, with AerAOB better coping with the inhibition, while the short FA shock and anaerobic starvation had minor effects. Combinatory effects inhibited AerAOB and NOB more strongly. A combined treatment of sulfide (150 mg S L-1), 2 days of anaerobic starvation, and FA shock (30 mg FA-N L-1) inhibited AerAOB 14% more strongly compared to sulfide addition alone, while the AerAOB/NOB activity ratio remained constant. Despite no positive change being observed in the immediate-stress response, AerAOB recovered much faster than NOB, with a nitrite accumulation ratio (effluent nitrite on nitrite + nitrate) peak of 50% after 12 days. Studying long-term recovery is therefore crucial for design of an optimal NOB-suppression treatment, while applying combined stressors regularly may lead toward practical implementation.


Assuntos
Nitritos , Esgotos , Amônia , Anaerobiose , Bactérias , Reatores Biológicos , Oxirredução , Sulfetos
9.
Water Sci Technol ; 78(1-2): 183-194, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30101801

RESUMO

Human urine accounts for only a fraction of the sewage volume, but it contains the majority of valuable nutrient load in wastewater. In this study, synthetic urine was nitrified in a closed photo-bioreactor through photosynthetic oxygenation by means of a consortium of microalgae and nitrifying bacteria. In situ production of oxygen by photosynthetic organisms has the potential to reduce the energy costs linked to conventional aeration. This energy-efficient strategy results in stable urine for further nutrient recovery, while part of the nutrients are biologically recovered in the form of valuable biomass. In this study, urine was nitrified for the first time without conventional aeration at a maximum photosynthetic oxygenation rate of 160 mg O2 gVSS-1 d-1 (VSS: volatile suspended solids). A maximum volumetric nitrification rate of 67 mg N L-1 d-1 was achieved on 12% diluted synthetic urine. Chemical oxygen demand (COD) removal efficiencies were situated between 44% and 83% at a removal rate of 24 mg COD gVSS-1 d-1. After 180 days, microscopic observations revealed that Scenedesmus sp. was the dominant microalga. Overall, photosynthetic oxygenation for urine nitrification is promising as a highly electricity efficient approach for further nutrient recovery.


Assuntos
Nitrificação , Fotobiorreatores , Urina/química , Purificação da Água , Humanos , Microalgas/metabolismo , Modelos Biológicos , Fotossíntese , Scenedesmus/metabolismo , Esgotos
10.
Environ Sci Technol ; 51(22): 13335-13343, 2017 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-29083891

RESUMO

Human urine contains a high concentration of nitrogen and is therefore an interesting source for nutrient recovery. Ureolysis is a key requirement in many processes aiming at nitrogen recovery from urine. Although ureolytic activity is widespread in terrestrial and aquatic environments, very little is known about the urease activity and regulation in specific bacteria other than human pathogens. Given the relatively high salt concentration of urine, marine bacteria would be particularly well suited for biotechnological applications involving nitrogen recovery from urine, and therefore, in this study, we investigated ureolytic activity and its regulation in marine vibrios. Thirteen out of 14 strains showed ureolytic activity. The urease activity was induced by urea, since complete and very rapid hydrolysis, up to 4 g L-1 h-1 of urea, was observed in synthetic human urine when the bacteria were pretreated with 10 g L-1 urea, whereas slow hydrolysis occurred when they were pretreated with 1 g L-1 urea (14-35% hydrolysis after 2 days). There was no correlation between biofilm formation and motility on one hand, and ureolysis on the other hand, and biofilm and motility inhibitors did not affect ureolysis. Together, our data demonstrate for the first time the potential of marine vibrios as fast urea hydrolyzers for biotechnological applications aiming at nutrient recovery from human urine.


Assuntos
Nitrogênio , Ureia , Vibrio , Humanos , Hidrólise , Urease
11.
Water Sci Technol ; 75(5-6): 1281-1293, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28333045

RESUMO

Manure represents an exquisite mining opportunity for nutrient recovery (nitrogen and phosphorus), and for their reuse as renewable fertilisers. The ManureEcoMine proposes an integrated approach of technologies, operated in a pilot-scale installation treating swine manure (83.7%) and Ecofrit® (16.3%), a mix of vegetable residues. Thermophilic anaerobic digestion was performed for 150 days, the final organic loading rate was 4.6 kgCOD m-3 d-1, with a biogas production rate of 1.4 Nm3 m-3 d-1. The digester was coupled to an ammonia side-stream stripping column and a scrubbing unit for free ammonia inhibition reduction in the digester, and nitrogen recovery as ammonium sulphate. The stripped digestate was recirculated daily in the digester for 15 days (68% of the digester volume), increasing the gas production rate by 27%. Following a decanter centrifuge, the digestate liquid fraction was treated with an ultrafiltration membrane. The filtrate was fed into a struvite reactor, with a phosphorus recovery efficiency of 83% (as orthophosphate). Acidification of digestate could increment the soluble orthophosphate concentration up to four times, enhancing phosphorus enrichment in the liquid fraction and its recovery via struvite. A synergistic combination of manure processing steps was demonstrated to be technologically feasible to upgrade livestock waste into refined, concentrated fertilisers.


Assuntos
Gado , Esterco/análise , Compostos Orgânicos/análise , Gerenciamento de Resíduos/métodos , Resíduos/análise , Ácidos/química , Amônia/análise , Compostos de Amônio/análise , Anaerobiose , Animais , Centrifugação , Precipitação Química , Membranas Artificiais , Nitrogênio/análise , Permeabilidade , Fósforo/análise , Projetos Piloto , Estruvita/química , Suínos , Temperatura , Ultrafiltração
12.
Artigo em Inglês | MEDLINE | ID: mdl-28949865

RESUMO

In this study, a recently developed model accounting for intracellular nitrate storage kinetics was thoroughly studied to understand and compare the storage capacity of Phaeodactylum tricornutum and Amphora coffeaeformis. In the first stage the identifiability of the biokinetic parameters was examined. Next, the kinetic model was calibrated for both microalgal species based on experimental observations during batch growth experiments. Two kinetic parameters were calibrated, namely the maximum specific growth rate [Formula: see text] and the nitrate storage rate ([Formula: see text]). A significant difference was observed for the nitrate storage rate between both species. For P. tricornutum, the nitrate storage rate was much higher ([Formula: see text] = 0.036 m3 g-1 DW d-1) compared to A. coffeaeformis ([Formula: see text] = 0.0004 m3 g-1 DW d-1). This suggests that P. tricornutum has a more efficient nitrate uptake ability and intracellular nitrate storage capacity and also indicates the need for determination of [Formula: see text] in order to quantify nitrate storage.


Assuntos
Diatomáceas/metabolismo , Microalgas/metabolismo , Modelos Biológicos , Nitratos/metabolismo , Poluentes Químicos da Água/análise , Diatomáceas/crescimento & desenvolvimento , Cinética , Microalgas/crescimento & desenvolvimento , Especificidade da Espécie , Águas Residuárias/química
13.
Environ Sci Technol ; 50(17): 9781-90, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27480015

RESUMO

Wastewater is typically treated by the conventional activated sludge process, which suffers from an inefficient overall energy balance. The high-rate contact stabilization (HiCS) has been proposed as a promising primary treatment technology with which to maximize redirection of organics to sludge for subsequent energy recovery. It utilizes a feast-famine cycle to select for bioflocculation, intracellular storage, or both. We optimized the HiCS process for organics recovery and characterized different biological pathways of organics removal and recovery. A total of eight HiCS reactors were operated at 15 °C at short solids retention times (SRT; 0.24-2.8 days), hydraulic contact times (tc; 8 and 15 min), and stabilization times (ts; 15 and 40 min). At an optimal SRT between 0.5 and 1.3 days and tc of 15 min and ts of 40 min, the HiCS system oxidized only 10% of influent chemical oxygen demand (COD) and recovered up to 55% of incoming organic matter into sludge. Storage played a minor role in the overall COD removal, which was likely dominated by aerobic biomass growth, bioflocculation onto extracellular polymeric substances, and settling. The HiCS process recovers enough organics to potentially produce 28 kWh of electricity per population equivalent per year by anaerobic digestion and electricity generation. This inspires new possibilities for energy-neutral wastewater treatment.


Assuntos
Esgotos/química , Águas Residuárias/química , Análise da Demanda Biológica de Oxigênio , Reatores Biológicos , Eliminação de Resíduos Líquidos
14.
Appl Microbiol Biotechnol ; 100(12): 5595-606, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26893142

RESUMO

The thermal hydrolysis process (THP) has been proven to be an excellent pretreatment step for an anaerobic digester (AD), increasing biogas yield and decreasing sludge disposal. The goal of this work was to optimize deammonification for efficient nitrogen removal despite the inhibition effects caused by the organics present in the THP-AD sludge filtrate (digestate). Two sequencing batch reactors were studied treating conventional digestate and THP-AD digestate, respectively. Improved process control based on higher dissolved oxygen set-point (1 mg O2/L) and longer aeration times could achieve successful treatment of THP-AD digestate. This increased set-point could overcome the inhibition effect on aerobic ammonium-oxidizing bacteria (AerAOB), potentially caused by particulate and colloidal organics. Moreover, based on the mass balance, anoxic ammonium-oxidizing bacteria (AnAOB) contribution to the total nitrogen removal decreased from 97 ± 1 % for conventional to 72 ± 5 % for THP-AD digestate treatment, but remained stable by selective AnAOB retention using a vibrating screen. Overall, similar total nitrogen removal rates of 520 ± 28 mg N/L/day at a loading rate of 600 mg N/L/day were achieved in the THP-AD reactor compared to the conventional digestate treatment operating at low dissolved oxygen (DO) (0.38 ± 0.10 mg O2/L).


Assuntos
Compostos de Amônio , Bactérias/metabolismo , Desnitrificação , Esgotos/química , Anaerobiose , Reatores Biológicos , Hidrólise , Oxigênio , Esgotos/microbiologia , Temperatura , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias
15.
Appl Microbiol Biotechnol ; 98(10): 4691-9, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24526362

RESUMO

Nitrification is a well-studied and established process to treat ammonia in wastewater. Although thermophilic nitrification could avoid cooling costs for the treatment of warm wastewaters, applications above 40 °C remain a significant challenge. This study tested the effect of salinity on the thermotolerance of mesophilic nitrifying sludge (34 °C). In batch tests, 5 g NaCl L(-1) increased the activity of aerobic ammonia-oxidizing bacteria (AerAOB) by 20-21 % at 40 and 45 °C. For nitrite-oxidizing bacteria (NOB), the activity remained unaltered at 40 °C, yet decreased by 83 % at 45 °C. In a subsequent long-term continuous reactor test, temperature was increased from 34 to 40, 42.5, 45, 47.5 and 50 °C. The AerAOB activity showed 65 and 37 % higher immediate resilience in the salt reactor (7.5 g NaCl L(-1)) for the first two temperature transitions and lost activity from 45 °C onwards. NOB activity, in contrast to the batch tests, was 37 and 21 % more resilient in the salt reactor for the first two transitions, while no difference was observed for the third temperature transition. The control reactor lost NOB activity at 47.5 °C, while the salt reactor only lost activity at 50 °C. Overall, this study demonstrates salt amendment as a tool for a more efficient temperature transition for mesophilic sludge (34 °C) and eventually higher nitrification temperatures.


Assuntos
Bactérias/metabolismo , Nitrificação/efeitos dos fármacos , Nitrificação/efeitos da radiação , Salinidade , Bactérias/efeitos dos fármacos , Bactérias/efeitos da radiação , Reatores Biológicos/microbiologia , Temperatura Alta , Cloreto de Sódio/metabolismo
16.
Appl Microbiol Biotechnol ; 98(19): 8377-87, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25001595

RESUMO

Within sustainable resource management, the recovery of nitrogen and phosphorus nutrients from waste streams is becoming increasingly important. Although the use of microalgae has been described extensively in environmental biotechnology, the potential of nitrate-accumulating microalgae for nutrient recovery has not been investigated yet. The ability of these marine microorganisms to concentrate environmental nitrate within their biomass is remarkable. The aim of this study was to investigate the application potential of nitrate-accumulating diatoms for nutrient recovery from marine wastewaters. The intracellular nitrate storage capacity was quantified for six marine diatom strains in synthetic wastewater. Amphora coffeaeformis and Phaeodactylum tricornutum stored the highest amount of nitrate with respectively 3.15 and 2.10 g N L(-1) of cell volume, which accounted for 17.3 and 4.6 %, respectively, of the total nitrogen content. The growth and nitrate and phosphate uptake of both diatoms were further analyzed and based on these features P. tricornutum showed the highest potential for nutrient recovery. A mathematical model was developed which included intracellular nitrate storage and the kinetic parameters were derived for P. tricornutum. Furthermore, a simulation study was performed to compare the performance of a proposed microalgal nutrient recovery unit with a conventional denitrification system for marine wastewater treatment. Overall, this study demonstrates the potential application of P. tricornutum for saline wastewater treatment with concurrent nitrogen and phosphorus recycling.


Assuntos
Diatomáceas/química , Diatomáceas/metabolismo , Microalgas/química , Microalgas/metabolismo , Nitratos/metabolismo , Biodegradação Ambiental , Diatomáceas/crescimento & desenvolvimento , Cinética , Microalgas/crescimento & desenvolvimento , Águas Residuárias/análise
17.
Microb Biotechnol ; 17(3): e14436, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38465733

RESUMO

Microbes are powerful upgraders, able to convert simple substrates to nutritional metabolites at rates and yields surpassing those of higher organisms by a factor of 2 to 10. A summary table highlights the superior efficiencies of a whole array of microbes compared to conventionally farmed animals and insects, converting nitrogen and organics to food and feed. Aiming at the most resource-efficient class of microbial proteins, deploying the power of open microbial communities, coined here as 'symbiotic microbiomes' is promising. For instance, a production train of interest is to develop rumen-inspired technologies to upgrade fibre-rich substrates, increasingly available as residues from emerging bioeconomy initiatives. Such advancements offer promising perspectives, as currently only 5%-25% of the available cellulose is recovered by ruminant livestock systems. While safely producing food and feed with open cultures has a long-standing tradition, novel symbiotic fermentation routes are currently facing much higher market entrance barriers compared to axenic fermentation. Our global society is at a pivotal juncture, requiring a shift towards food production systems that not only embrace the environmental and economic sustainability but also uphold ethical standards. In this context, we propose to re-examine the place of spontaneous or natural microbial consortia for safe future food and feed biotech developments, and advocate for intelligent regulatory practices. We stress that reconsidering symbiotic microbiomes is key to achieve sustainable development goals and defend the need for microbial biotechnology literacy education.


Assuntos
Biotecnologia , Ruminantes , Animais , Fermentação , Ração Animal , Custos e Análise de Custo
18.
Sci Total Environ ; 912: 169449, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38123077

RESUMO

Selective suppression of nitrite-oxidising bacteria (NOB) over aerobic and anoxic ammonium-oxidising bacteria (AerAOB and AnAOB) remains a major challenge for mainstream partial nitritation/anammox implementation, a resource-efficient nitrogen removal pathway. A unique multi-stressor floc treatment was therefore designed and validated for the first time under lab-scale conditions while staying true to full-scale design principles. Two hybrid (suspended + biofilm growth) reactors were operated continuously at 20.2 ± 0.6 °C. Recurrent multi-stressor floc treatments were applied, consisting of a sulphide-spiked deoxygenated starvation followed by a free ammonia shock. A good microbial activity balance with high AnAOB (71 ± 21 mg N L-1 d-1) and low NOB (4 ± 17 % of AerAOB) activity was achieved by combining multiple operational strategies: recurrent multi-stressor floc treatments, hybrid sludge (flocs & biofilm), short floc age control, intermittent aeration, and residual ammonium control. The multi-stressor treatment was shown to be the most important control tool and should be continuously applied to maintain this balance. Excessive NOB growth on the biofilm was avoided despite only treating the flocs to safeguard the AnAOB activity on the biofilm. Additionally, no signs of NOB adaptation were observed over 142 days. Elevated effluent ammonium concentrations (25 ± 6 mg N L-1) limited the TN removal efficiency to 39 ± 9 %, complicating a future full-scale implementation. Operating at higher sludge concentrations or reducing the volumetric loading rate could overcome this issue. The obtained results ease the implementation of mainstream PN/A by providing and additional control tool to steer the microbial activity with the multi-stressor treatment, thus advancing the concept of energy neutrality in sewage treatment plants.


Assuntos
Amônia , Compostos de Amônio , Amônia/metabolismo , Esgotos , Oxidação Anaeróbia da Amônia , Reatores Biológicos/microbiologia , Oxirredução , Nitritos/metabolismo , Compostos de Amônio/metabolismo , Nitrogênio/metabolismo , Bactérias/metabolismo , Sulfetos/metabolismo
19.
iScience ; 27(5): 109596, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38638570

RESUMO

The advancement of regenerative life support systems (RLSS) is crucial to allow long-distance space travel. Within the Micro-Ecological Life Support System Alternative (MELiSSA), efficient nitrogen recovery from urine and other waste streams is vital to produce liquid fertilizer to feed food and oxygen production in subsequent photoautotrophic processes. This study explores the effects of ionizing radiation on nitrogen cycle bacteria that transform urea to nitrate. In particular, we assess the radiotolerance of Comamonas testosteroni, Nitrosomonas europaea, and Nitrobacter winogradskyi after exposure to acute γ-irradiation. Moreover, a comprehensive whole transcriptome analysis elucidates the effects of spaceflight-analogue low-dose ionizing radiation on the individual axenic strains and on their synthetic community o. This research sheds light on how the spaceflight environment could affect ureolysis and nitrification processes from a transcriptomic perspective.

20.
NPJ Microgravity ; 10(1): 3, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38200027

RESUMO

Regenerative life support systems (RLSS) will play a vital role in achieving self-sufficiency during long-distance space travel. Urine conversion into a liquid nitrate-based fertilizer is a key process in most RLSS. This study describes the effects of simulated microgravity (SMG) on Comamonas testosteroni, Nitrosomonas europaea, Nitrobacter winogradskyi and a tripartite culture of the three, in the context of nitrogen recovery for the Micro-Ecological Life Support System Alternative (MELiSSA). Rotary cell culture systems (RCCS) and random positioning machines (RPM) were used as SMG analogues. The transcriptional responses of the cultures were elucidated. For CO2-producing C. testosteroni and the tripartite culture, a PermaLifeTM PL-70 cell culture bag mounted on an in-house 3D-printed holder was applied to eliminate air bubble formation during SMG cultivation. Gene expression changes indicated that the fluid dynamics in SMG caused nutrient and O2 limitation. Genes involved in urea hydrolysis and nitrification were minimally affected, while denitrification-related gene expression was increased. The findings highlight potential challenges for nitrogen recovery in space.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA