Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Immunol ; 198(1): 128-137, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27872212

RESUMO

Type 2 innate lymphoid cells (ILC2) mediate inflammatory immune responses in the context of diseases triggered by the alarmin IL-33. In recent years, IL-33 has been implicated in the pathogenesis of immune-mediated liver diseases. However, the immunoregulatory function of ILC2s in the inflamed liver remains elusive. Using the murine model of Con A-induced immune-mediated hepatitis, we showed that selective expansion of ILC2s in the liver was associated with highly elevated hepatic IL-33 expression, severe liver inflammation, and infiltration of eosinophils. CD4+ T cell-mediated tissue damage and subsequent IL-33 release were responsible for the activation of hepatic ILC2s that produced the type 2 cytokines IL-5 and IL-13 during liver inflammation. Interestingly, ILC2 depletion correlated with less severe hepatitis and reduced accumulation of eosinophils in the liver, whereas adoptive transfer of hepatic ILC2s aggravated liver inflammation and tissue damage. We further showed that, despite expansion of hepatic ILC2s, 3-d IL-33 treatment before Con A challenge potently suppressed development of immune-mediated hepatitis. We found that IL-33 not only activated hepatic ILC2s but also expanded CD4+ Foxp3+ regulatory T cells (Treg) expressing the IL-33 receptor ST2 in the liver. This Treg subset also accumulated in the liver during resolution of immune-mediated hepatitis. In summary, hepatic ILC2s are poised to respond to the release of IL-33 upon liver tissue damage through expression of type 2 cytokines thereby participating in the pathogenesis of immune-mediated hepatitis. Inflammatory activity of ILC2s might be regulated by IL-33-elicited ST2+ Tregs that also arise in immune-mediated hepatitis.


Assuntos
Hepatite Autoimune/imunologia , Ativação Linfocitária/imunologia , Linfócitos/imunologia , Transferência Adotiva , Animais , Citocinas/biossíntese , Citocinas/imunologia , Modelos Animais de Doenças , Citometria de Fluxo , Humanos , Imuno-Histoquímica , Interleucina-33/biossíntese , Interleucina-33/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Reação em Cadeia da Polimerase em Tempo Real , Linfócitos T Reguladores/imunologia
2.
Immunology ; 142(3): 421-30, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24527810

RESUMO

Murine embryonic stem (ES) cell-derived haematopoietic progenitor cells (HPCs) engraft and populate lymphoid organs. In vivo, HPCs engraft across MHC barriers protecting donor-type allografts from rejection. However, the underlying phenomenon remains elusive. Here, we sought to determine the mechanism by which ES cell-derived HPCs regulate alloreactive T cells. We used the 2C mouse, which expresses a transgenic T-cell receptor against H2-L(d) to determine whether HPCs are deleted by cytotoxic T lymphocytes (CTLs). Previously, we reported that HPCs express MHC class I antigens poorly and do not express class II antigens. In vitro stimulated 2C CTLs failed to lyse H2-L(d) HPCs in a standard 4-hr (51) chromium release assay. Similarly, when the HPCs were tested in an ELISPOT assay measuring the release of interferon-γ by CTLs, HPCs failed to induce CTL degranulation. In addition, mice that were injected with HPCs showed a marked decrease in T-cell responses to alloantigen and CD3 stimulation, but showed a normal response to PMA/ionomycin, suggesting that HPCs impaired T-cell signalling through the T-cell receptor/CD3 complex. Here, we show that HPCs secrete arginase, an enzyme that scavenges l-arginine, leading to metabolites that down-regulate CD3 ζ chain. Indeed an arginase inhibitor partially restored expression of the CD3 ζ chain, implicating arginase 1 in the down-regulation of T cells. This previously unrecognized property of ES cell-derived HPCs could positively enhance the engraftment of ES cell-derived HPCs across MHC barriers by preventing rejection.


Assuntos
Complexo CD3/imunologia , Regulação para Baixo , Células-Tronco Embrionárias/citologia , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/imunologia , Linfócitos T Reguladores/imunologia , Animais , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos MRL lpr
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA