Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Methods ; 20(8): 1159-1169, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37443337

RESUMO

The detection of circular RNA molecules (circRNAs) is typically based on short-read RNA sequencing data processed using computational tools. Numerous such tools have been developed, but a systematic comparison with orthogonal validation is missing. Here, we set up a circRNA detection tool benchmarking study, in which 16 tools detected more than 315,000 unique circRNAs in three deeply sequenced human cell types. Next, 1,516 predicted circRNAs were validated using three orthogonal methods. Generally, tool-specific precision is high and similar (median of 98.8%, 96.3% and 95.5% for qPCR, RNase R and amplicon sequencing, respectively) whereas the sensitivity and number of predicted circRNAs (ranging from 1,372 to 58,032) are the most significant differentiators. Of note, precision values are lower when evaluating low-abundance circRNAs. We also show that the tools can be used complementarily to increase detection sensitivity. Finally, we offer recommendations for future circRNA detection and validation.


Assuntos
Benchmarking , RNA Circular , Humanos , RNA Circular/genética , RNA/genética , RNA/metabolismo , Análise de Sequência de RNA/métodos
2.
BMC Genomics ; 24(1): 305, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37280537

RESUMO

Our incomplete knowledge of the human transcriptome impairs the detection of disease-causing variants, in particular if they affect transcripts only expressed under certain conditions. These transcripts are often lacking from reference transcript sets, such as Ensembl/GENCODE and RefSeq, and could be relevant for establishing genetic diagnoses. We present SUsPECT (Solving Unsolved Patient Exomes/gEnomes using Custom Transcriptomes), a pipeline based on the Ensembl Variant Effect Predictor (VEP) to predict variant impact on custom transcript sets, such as those generated by long-read RNA-sequencing, for downstream prioritization. Our pipeline predicts the functional consequence and likely deleteriousness scores for missense variants in the context of novel open reading frames predicted from any transcriptome. We demonstrate the utility of SUsPECT by uncovering potential mutational mechanisms of pathogenic variants in ClinVar that are not predicted to be pathogenic using the reference transcript annotation. In further support of SUsPECT's utility, we identified an enrichment of immune-related variants predicted to have a more severe molecular consequence when annotating with a newly generated transcriptome from stimulated immune cells instead of the reference transcriptome. Our pipeline outputs crucial information for further prioritization of potentially disease-causing variants for any disease and will become increasingly useful as more long-read RNA sequencing datasets become available.


Assuntos
Software , Transcriptoma , Humanos , Anotação de Sequência Molecular , Análise de Sequência de RNA/métodos , Exoma , Sequenciamento de Nucleotídeos em Larga Escala
3.
Brief Bioinform ; 22(1): 288-297, 2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-31998941

RESUMO

Circular RNAs (circRNAs) are covalently closed RNA molecules that have been linked to various diseases, including cancer. However, a precise function and working mechanism are lacking for the larger majority. Following many different experimental and computational approaches to identify circRNAs, multiple circRNA databases were developed as well. Unfortunately, there are several major issues with the current circRNA databases, which substantially hamper progression in the field. First, as the overlap in content is limited, a true reference set of circRNAs is lacking. This results from the low abundance and highly specific expression of circRNAs, and varying sequencing methods, data-analysis pipelines, and circRNA detection tools. A second major issue is the use of ambiguous nomenclature. Thus, redundant or even conflicting names for circRNAs across different databases contribute to the reproducibility crisis. Third, circRNA databases, in essence, rely on the position of the circRNA back-splice junction, whereas alternative splicing could result in circRNAs with different length and sequence. To uniquely identify a circRNA molecule, the full circular sequence is required. Fourth, circRNA databases annotate circRNAs' microRNA binding and protein-coding potential, but these annotations are generally based on presumed circRNA sequences. Finally, several databases are not regularly updated, contain incomplete data or suffer from connectivity issues. In this review, we present a comprehensive overview of the current circRNA databases and their content, features, and usability. In addition to discussing the current issues regarding circRNA databases, we come with important suggestions to streamline further research in this growing field.


Assuntos
Bases de Dados Genéticas/normas , RNA Circular/genética , Animais , Bases de Dados Genéticas/tendências , Genômica/métodos , Humanos , RNA Circular/química
4.
J Proteome Res ; 21(5): 1365-1370, 2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-35446579

RESUMO

Maintaining high sensitivity while limiting false positives is a key challenge in peptide identification from mass spectrometry data. Here, we investigate the effects of integrating the machine learning-based postprocessor Percolator into our spectral library searching tool COSS (CompOmics Spectral library Searching tool). To evaluate the effects of this postprocessing, we have used 40 data sets from 2 different projects and have searched these against the NIST and MassIVE spectral libraries. The searching is carried out using 2 spectral library search tools, COSS and MSPepSearch with and without Percolator postprocessing, and using sequence database search engine MS-GF+ as a baseline comparator. The addition of the Percolator rescoring step to COSS is effective and results in a substantial improvement in sensitivity and specificity of the identifications. COSS is freely available as open source under the permissive Apache2 license, and binaries and source code are found at https://github.com/compomics/COSS.


Assuntos
Proteômica , Ferramenta de Busca , Algoritmos , Bases de Dados de Proteínas , Biblioteca de Peptídeos , Proteômica/métodos , Ferramenta de Busca/métodos , Software , Espectrometria de Massas em Tandem/métodos
5.
Genome Res ; 29(3): 344-355, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30683753

RESUMO

Transcription initiates at both coding and noncoding genomic elements, including mRNA and long noncoding RNA (lncRNA) core promoters and enhancer RNAs (eRNAs). However, each class has a different expression profile with lncRNAs and eRNAs being the most tissue specific. How these complex differences in expression profiles and tissue specificities are encoded in a single DNA sequence remains unresolved. Here, we address this question using computational approaches and massively parallel reporter assays (MPRA) surveying hundreds of promoters and enhancers. We find that both divergent lncRNA and mRNA core promoters have higher capacities to drive transcription than nondivergent lncRNA and mRNA core promoters, respectively. Conversely, intergenic lncRNAs (lincRNAs) and eRNAs have lower capacities to drive transcription and are more tissue specific than divergent genes. This higher tissue specificity is strongly associated with having less complex transcription factor (TF) motif profiles at the core promoter. We experimentally validated these findings by testing both engineered single-nucleotide deletions and human single-nucleotide polymorphisms (SNPs) in MPRA. In both cases, we observe that single nucleotides associated with many motifs are important drivers of promoter activity. Thus, we suggest that high TF motif density serves as a robust mechanism to increase promoter activity at the expense of tissue specificity. Moreover, we find that 22% of common SNPs in core promoter regions have significant regulatory effects. Collectively, our findings show that high TF motif density provides redundancy and increases promoter activity at the expense of tissue specificity, suggesting that specificity of expression may be regulated by simplicity of motif usage.


Assuntos
Regiões Promotoras Genéticas , RNA Longo não Codificante/genética , Genoma Humano , Humanos , Especificidade de Órgãos , Polimorfismo de Nucleotídeo Único
6.
EMBO Rep ; 21(5): e49006, 2020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-32255245

RESUMO

γδ and αß T cells have unique roles in immunity and both originate in the thymus from T-lineage committed precursors through distinct but unclear mechanisms. Here, we show that Notch1 activation is more stringently required for human γδ development compared to αß-lineage differentiation and performed paired mRNA and miRNA profiling across 11 discrete developmental stages of human T cell development in an effort to identify the potential Notch1 downstream mechanism. Our data suggest that the miR-17-92 cluster is a Notch1 target in immature thymocytes and that miR-17 can restrict BCL11B expression in these Notch-dependent T cell precursors. We show that enforced miR-17 expression promotes human γδ T cell development and, consistently, that BCL11B is absolutely required for αß but less for γδ T cell development. This study suggests that human γδ T cell development is mediated by a stage-specific Notch-driven negative feedback loop through which miR-17 temporally restricts BCL11B expression and provides functional insights into the developmental role of the disease-associated genes BCL11B and the miR-17-92 cluster in a human context.


Assuntos
Receptores de Antígenos de Linfócitos T alfa-beta , Receptores de Antígenos de Linfócitos T gama-delta , Diferenciação Celular , Linhagem da Célula/genética , Humanos , Receptor Notch1/genética , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T gama-delta/genética , Proteínas Repressoras , Transdução de Sinais , Timo , Proteínas Supressoras de Tumor
7.
J Proteome Res ; 20(6): 3353-3364, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-33998808

RESUMO

Discovery of variant peptides such as a single amino acid variant (SAAV) in shotgun proteomics data is essential for personalized proteomics. Both the resolution of shotgun proteomics methods and the search engines have improved dramatically, allowing for confident identification of SAAV peptides. However, it is not yet known if these methods are truly successful in accurately identifying SAAV peptides without prior genomic information in the search database. We studied this in unprecedented detail by exploiting publicly available long-read RNA sequences and shotgun proteomics data from the gold standard reference cell line NA12878. Searching spectra from this cell line with the state-of-the-art open modification search engine ionbot against carefully curated search databases resulted in 96.7% false-positive SAAVs and an 85% lower true positive rate than searching with peptide search databases that incorporate prior genetic information. While adding genetic variants to the search database remains indispensable for correct peptide identification, inclusion of long-read RNA sequences in the search database contributes only 0.3% new peptide identifications. These findings reveal the differences in SAAV detection that result from various approaches, providing guidance to researchers studying SAAV peptides and developers of peptide spectrum identification tools.


Assuntos
Proteogenômica , Aminoácidos , Bases de Dados de Proteínas , Proteoma/genética , Proteômica , Ferramenta de Busca
8.
Nucleic Acids Res ; 47(D1): D135-D139, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30371849

RESUMO

While long non-coding RNA (lncRNA) research in the past has primarily focused on the discovery of novel genes, today it has shifted towards functional annotation of this large class of genes. With thousands of lncRNA studies published every year, the current challenge lies in keeping track of which lncRNAs are functionally described. This is further complicated by the fact that lncRNA nomenclature is not straightforward and lncRNA annotation is scattered across different resources with their own quality metrics and definition of a lncRNA. To overcome this issue, large scale curation and annotation is needed. Here, we present the fifth release of the human lncRNA database LNCipedia (https://lncipedia.org). The most notable improvements include manual literature curation of 2482 lncRNA articles and the use of official gene symbols when available. In addition, an improved filtering pipeline results in a higher quality reference lncRNA gene set.


Assuntos
Biologia Computacional/métodos , Bases de Dados de Ácidos Nucleicos , RNA Longo não Codificante/genética , Genômica/métodos , Humanos , Anotação de Sequência Molecular , Navegador
9.
BMC Bioinformatics ; 21(1): 58, 2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-32066370

RESUMO

BACKGROUND: To understand biology and differences among various tissues or cell types, one typically searches for molecular features that display characteristic abundance patterns. Several specificity metrics have been introduced to identify tissue-specific molecular features, but these either require an equal number of replicates per tissue or they can't handle replicates at all. RESULTS: We describe a non-parametric specificity score that is compatible with unequal sample group sizes. To demonstrate its usefulness, the specificity score was calculated on all GTEx samples, detecting known and novel tissue-specific genes. A webtool was developed to browse these results for genes or tissues of interest. An example python implementation of SPECS is available at https://github.com/celineeveraert/SPECS. The precalculated SPECS results on the GTEx data are available through a user-friendly browser at specs.cmgg.be. CONCLUSIONS: SPECS is a non-parametric method that identifies known and novel specific-expressed genes. In addition, SPECS could be adopted for other features and applications.


Assuntos
Software , Perfilação da Expressão Gênica , Tamanho da Amostra , Análise de Sequência de RNA , Estatísticas não Paramétricas
10.
J Proteome Res ; 19(7): 2786-2793, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32384242

RESUMO

Spectral similarity searching to identify peptide-derived MS/MS spectra is a promising technique, and different spectrum similarity search tools have therefore been developed. Each of these tools, however, comes with some limitations, mainly because of low processing speed and issues with handling large databases. Furthermore, the number of spectral data formats supported is typically limited, which also creates a threshold to adoption. We have therefore developed COSS (CompOmics Spectral Searching), a new and user-friendly spectral library search tool supporting two scoring functions. COSS also includes decoy spectra generation for result validation. We have benchmarked COSS on three different spectral libraries and compared the results with established spectral searching tools and a sequence database search tool. Our comparison showed that COSS more reliably identifies spectra, is capable of handling large data sets and libraries, and is an easy to use tool that can run on low computer specifications. COSS binaries and source code can be freely downloaded from https://github.com/compomics/COSS.


Assuntos
Software , Espectrometria de Massas em Tandem , Algoritmos , Bases de Dados de Proteínas , Peptídeos , Ferramenta de Busca
11.
Genes Chromosomes Cancer ; 58(4): 191-199, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30461116

RESUMO

In recent years, technological advances in transcriptome profiling revealed that the repertoire of human RNA molecules is more diverse and extended than originally thought. This diversity and complexity mainly derive from a large ensemble of noncoding RNAs. Because of their key roles in cellular processes important for normal development and physiology, disruption of noncoding RNA expression is intrinsically linked to human disease, including cancer. Therefore, studying the noncoding portion of the transcriptome offers the prospect of identifying novel therapeutic and diagnostic targets. Although evidence of the relevance of noncoding RNAs in cancer is accumulating, we still face many challenges when it comes to accurately profiling their expression levels. Some of these challenges are inherent to the technologies employed, whereas others are associated with characteristics of the noncoding RNAs themselves. In this review, we discuss the challenges related to long noncoding RNA expression profiling, highlight how cancer long noncoding RNAs provide new opportunities for cancer diagnosis and treatment, and reflect on future developments.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias/genética , RNA Longo não Codificante/genética , Animais , Biomarcadores Tumorais/metabolismo , Humanos , Neoplasias/diagnóstico , RNA Longo não Codificante/metabolismo
12.
Nucleic Acids Res ; 45(7): e51, 2017 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-27986855

RESUMO

In microRNA (miRNA) target prediction, typically two levels of information need to be modeled: the number of potential miRNA binding sites present in a target mRNA and the genomic context of each individual site. Single model structures insufficiently cope with this complex training data structure, consisting of feature vectors of unequal length as a consequence of the varying number of miRNA binding sites in different mRNAs. To circumvent this problem, we developed a two-layered, stacked model, in which the influence of binding site context is separately modeled. Using logistic regression and random forests, we applied the stacked model approach to a unique data set of 7990 probed miRNA-mRNA interactions, hereby including the largest number of miRNAs in model training to date. Compared to lower-complexity models, a particular stacked model, named miSTAR (miRNA stacked model target prediction; www.mi-star.org), displays a higher general performance and precision on top scoring predictions. More importantly, our model outperforms published and widely used miRNA target prediction algorithms. Finally, we highlight flaws in cross-validation schemes for evaluation of miRNA target prediction models and adopt a more fair and stringent approach.


Assuntos
Regiões 3' não Traduzidas , MicroRNAs/metabolismo , Modelos Genéticos , Algoritmos , Sítios de Ligação , Humanos , Aprendizado de Máquina , RNA Mensageiro/metabolismo , Software
13.
Nucleic Acids Res ; 45(D1): D128-D134, 2017 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-27794554

RESUMO

RNAcentral is a database of non-coding RNA (ncRNA) sequences that aggregates data from specialised ncRNA resources and provides a single entry point for accessing ncRNA sequences of all ncRNA types from all organisms. Since its launch in 2014, RNAcentral has integrated twelve new resources, taking the total number of collaborating database to 22, and began importing new types of data, such as modified nucleotides from MODOMICS and PDB. We created new species-specific identifiers that refer to unique RNA sequences within a context of single species. The website has been subject to continuous improvements focusing on text and sequence similarity searches as well as genome browsing functionality. All RNAcentral data is provided for free and is available for browsing, bulk downloads, and programmatic access at http://rnacentral.org/.


Assuntos
Bases de Dados de Ácidos Nucleicos , RNA não Traduzido/química , Animais , Genômica , Humanos , Nucleotídeos/química , Análise de Sequência de RNA , Especificidade da Espécie
14.
J Proteome Res ; 17(12): 4051-4060, 2018 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-30270626

RESUMO

The 2017 Dagstuhl Seminar on Computational Proteomics provided an opportunity for a broad discussion on the current state and future directions of the generation and use of peptide tandem mass spectrometry spectral libraries. Their use in proteomics is growing slowly, but there are multiple challenges in the field that must be addressed to further increase the adoption of spectral libraries and related techniques. The primary bottlenecks are the paucity of high quality and comprehensive libraries and the general difficulty of adopting spectral library searching into existing workflows. There are several existing spectral library formats, but none captures a satisfactory level of metadata; therefore, a logical next improvement is to design a more advanced, Proteomics Standards Initiative-approved spectral library format that can encode all of the desired metadata. The group discussed a series of metadata requirements organized into three designations of completeness or quality, tentatively dubbed bronze, silver, and gold. The metadata can be organized at four different levels of granularity: at the collection (library) level, at the individual entry (peptide ion) level, at the peak (fragment ion) level, and at the peak annotation level. Strategies for encoding mass modifications in a consistent manner and the requirement for encoding high-quality and commonly seen but as-yet-unidentified spectra were discussed. The group also discussed related topics, including strategies for comparing two spectra, techniques for generating representative spectra for a library, approaches for selection of optimal signature ions for targeted workflows, and issues surrounding the merging of two or more libraries into one. We present here a review of this field and the challenges that the community must address in order to accelerate the adoption of spectral libraries in routine analysis of proteomics datasets.


Assuntos
Bases de Dados de Proteínas/normas , Biblioteca de Peptídeos , Proteômica/métodos , Animais , Humanos , Espectrometria de Massas em Tandem/métodos , Fluxo de Trabalho
15.
BMC Bioinformatics ; 18(1): 231, 2017 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-28464823

RESUMO

BACKGROUND: Reconstructing transcript models from RNA-sequencing (RNA-seq) data and establishing these as independent transcriptional units can be a challenging task. Current state-of-the-art tools for long non-coding RNA (lncRNA) annotation are mainly based on evolutionary constraints, which may result in false negatives due to the overall limited conservation of lncRNAs. RESULTS: To tackle this problem we have developed the Zipper plot, a novel visualization and analysis method that enables users to simultaneously interrogate thousands of human putative transcription start sites (TSSs) in relation to various features that are indicative for transcriptional activity. These include publicly available CAGE-sequencing, ChIP-sequencing and DNase-sequencing datasets. Our method only requires three tab-separated fields (chromosome, genomic coordinate of the TSS and strand) as input and generates a report that includes a detailed summary table, a Zipper plot and several statistics derived from this plot. CONCLUSION: Using the Zipper plot, we found evidence of transcription for a set of well-characterized lncRNAs and observed that fewer mono-exonic lncRNAs have CAGE peaks overlapping with their TSSs compared to multi-exonic lncRNAs. Using publicly available RNA-seq data, we found more than one hundred cases where junction reads connected protein-coding gene exons with a downstream mono-exonic lncRNA, revealing the need for a careful evaluation of lncRNA 5'-boundaries. Our method is implemented using the statistical programming language R and is freely available as a webtool.


Assuntos
Genômica/métodos , RNA Longo não Codificante/genética , Análise de Sequência de RNA/métodos , Software , Imunoprecipitação da Cromatina , Humanos , Sítio de Iniciação de Transcrição
16.
J Proteome Res ; 16(7): 2508-2515, 2017 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-28534634

RESUMO

Over the past decade, long noncoding RNAs (lncRNAs) have emerged as novel functional entities of the eukaryotic genome. However, the scientific community remains divided over the amount of true noncoding transcripts among the large number of unannotated transcripts identified by recent large scale and deep RNA-sequencing efforts. Here, we systematically exclude possible technical reasons underlying the absence of lncRNA-encoded proteins in mass spectrometry data sets, strongly suggesting that the large majority of lncRNAs is indeed not translated.


Assuntos
Genoma , Biossíntese de Proteínas , Proteínas/análise , Proteômica/métodos , RNA Longo não Codificante/genética , Eucariotos , Regulação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Espectrometria de Massas , Proteínas/genética , Proteínas/metabolismo , Controle de Qualidade , RNA Longo não Codificante/metabolismo
17.
Nucleic Acids Res ; 43(Database issue): D174-80, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25378313

RESUMO

The human genome is pervasively transcribed, producing thousands of non-coding RNA transcripts. The majority of these transcripts are long non-coding RNAs (lncRNAs) and novel lncRNA genes are being identified at rapid pace. To streamline these efforts, we created LNCipedia, an online repository of lncRNA transcripts and annotation. Here, we present LNCipedia 3.0 (http://www.lncipedia.org), the latest version of the publicly available human lncRNA database. Compared to the previous version of LNCipedia, the database grew over five times in size, gaining over 90,000 new lncRNA transcripts. Assessment of the protein-coding potential of LNCipedia entries is improved with state-of-the art methods that include large-scale reprocessing of publicly available proteomics data. As a result, a high-confidence set of lncRNA transcripts with low coding potential is defined and made available for download. In addition, a tool to assess lncRNA gene conservation between human, mouse and zebrafish has been implemented.


Assuntos
Bases de Dados de Ácidos Nucleicos , RNA Longo não Codificante/química , Animais , Células HEK293 , Humanos , Internet , Camundongos , Anotação de Sequência Molecular , Proteínas/genética , RNA Longo não Codificante/genética , Análise de Sequência de RNA , Peixe-Zebra/genética
18.
Nucleic Acids Res ; 41(Database issue): D246-51, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23042674

RESUMO

Here, we present LNCipedia (http://www.lncipedia.org), a novel database for human long non-coding RNA (lncRNA) transcripts and genes. LncRNAs constitute a large and diverse class of non-coding RNA genes. Although several lncRNAs have been functionally annotated, the majority remains to be characterized. Different high-throughput methods to identify new lncRNAs (including RNA sequencing and annotation of chromatin-state maps) have been applied in various studies resulting in multiple unrelated lncRNA data sets. LNCipedia offers 21 488 annotated human lncRNA transcripts obtained from different sources. In addition to basic transcript information and gene structure, several statistics are determined for each entry in the database, such as secondary structure information, protein coding potential and microRNA binding sites. Our analyses suggest that, much like microRNAs, many lncRNAs have a significant secondary structure, in-line with their presumed association with proteins or protein complexes. Available literature on specific lncRNAs is linked, and users or authors can submit articles through a web interface. Protein coding potential is assessed by two different prediction algorithms: Coding Potential Calculator and HMMER. In addition, a novel strategy has been integrated for detecting potentially coding lncRNAs by automatically re-analysing the large body of publicly available mass spectrometry data in the PRIDE database. LNCipedia is publicly available and allows users to query and download lncRNA sequences and structures based on different search criteria. The database may serve as a resource to initiate small- and large-scale lncRNA studies. As an example, the LNCipedia content was used to develop a custom microarray for expression profiling of all available lncRNAs.


Assuntos
Bases de Dados de Ácidos Nucleicos , RNA Longo não Codificante/química , Humanos , Internet , Anotação de Sequência Molecular , Proteínas/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Software , Transcriptoma
19.
Haematologica ; 99(12): 1808-16, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25344525

RESUMO

Genetic studies in T-cell acute lymphoblastic leukemia have uncovered a remarkable complexity of oncogenic and loss-of-function mutations. Amongst this plethora of genetic changes, NOTCH1 activating mutations stand out as the most frequently occurring genetic defect, identified in more than 50% of T-cell acute lymphoblastic leukemias, supporting a role as an essential driver for this gene in T-cell acute lymphoblastic leukemia oncogenesis. In this study, we aimed to establish a comprehensive compendium of the long non-coding RNA transcriptome under control of Notch signaling. For this purpose, we measured the transcriptional response of all protein coding genes and long non-coding RNAs upon pharmacological Notch inhibition in the human T-cell acute lymphoblastic leukemia cell line CUTLL1 using RNA-sequencing. Similar Notch dependent profiles were established for normal human CD34(+) thymic T-cell progenitors exposed to Notch signaling activity in vivo. In addition, we generated long non-coding RNA expression profiles (array data) from ex vivo isolated Notch active CD34(+) and Notch inactive CD4(+)CD8(+) thymocytes and from a primary cohort of 15 T-cell acute lymphoblastic leukemia patients with known NOTCH1 mutation status. Integration of these expression datasets with publicly available Notch1 ChIP-sequencing data resulted in the identification of long non-coding RNAs directly regulated by Notch activity in normal and malignant T cells. Given the central role of Notch in T-cell acute lymphoblastic leukemia oncogenesis, these data pave the way for the development of novel therapeutic strategies that target hyperactive Notch signaling in human T-cell acute lymphoblastic leukemia.


Assuntos
Biomarcadores Tumorais/genética , Mutação/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , RNA Longo não Codificante/genética , Receptor Notch1/metabolismo , Timócitos/metabolismo , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/metabolismo , Biomarcadores Tumorais/metabolismo , Western Blotting , Estudos de Casos e Controles , Transformação Celular Neoplásica/patologia , Células Cultivadas , Imunoprecipitação da Cromatina , Estudos de Coortes , Inibidores Enzimáticos/farmacologia , Seguimentos , Perfilação da Expressão Gênica , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Prognóstico , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptor Notch1/antagonistas & inibidores , Receptor Notch1/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Timócitos/citologia , Timócitos/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA