Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 152
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 300(1): 105581, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38141765

RESUMO

Metastasis still accounts for 90% of all cancer-related death cases. An increase of cellular mobility and invasive traits of cancer cells mark two crucial prerequisites of metastasis. Recent studies highlight the involvement of the endolysosomal cation channel TRPML1 in cell migration. Our results identified a widely antimigratory effect upon loss of TRPML1 function in a panel of cell lines in vitro and reduced dissemination in vivo. As mode-of-action, we established TRPML1 as a crucial regulator of cytosolic calcium levels, actin polymerization, and intracellular trafficking of two promigratory proteins: E-cadherin and ß1-integrin. Interestingly, KO of TRPML1 differentially interferes with the recycling process of E-cadherin and ß1-integrin in a cell line-dependant manner, while resulting in the same phenotype of decreased migratory and adhesive capacities in vitro. Additionally, we observed a coherence between reduction of E-cadherin levels at membrane site and phosphorylation of NF-κB in a ß-catenin/p38-mediated manner. As a result, an E-cadherin/NF-κB feedback loop is generated, regulating E-cadherin expression on a transcriptional level. Consequently, our findings highlight the role of TRPML1 as a regulator in migratory processes and suggest the ion channel as a suitable target for the inhibition of migration and invasion.


Assuntos
Caderinas , Movimento Celular , Integrina beta1 , Neoplasias , Canais de Potencial de Receptor Transitório , Caderinas/metabolismo , Linhagem Celular Tumoral , Integrina beta1/metabolismo , Neoplasias/metabolismo , NF-kappa B , Humanos , Lisossomos , Canais de Potencial de Receptor Transitório/genética , Canais de Potencial de Receptor Transitório/metabolismo , Animais , Camundongos , Cálcio/metabolismo , Transporte Proteico
2.
J Cell Sci ; 136(2)2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36718783

RESUMO

Notch signaling is critical for many developmental and disease-related processes. It is widely accepted that Notch has a mechanotransduction module that regulates receptor cleavage. However, the role of biomechanical properties of the cellular environment in Notch signaling in general is still poorly understood. During angiogenesis, differentiation of endothelial cells into tip and stalk cells is regulated by Notch signaling, and remodeling of the extracellular matrix occurs. We investigated the influence of substrate stiffness on the Notch signaling pathway in endothelial cells. Using stiffness-tuned polydimethylsiloxane (PDMS) substrates, we show that activity of the Notch signaling pathway inversely correlates with a physiologically relevant range of substrate stiffness (i.e. increased Notch signaling activity on softer substrates). Trans-endocytosis of the Notch extracellular domain, but not the overall endocytosis, is regulated by substrate stiffness, and integrin cell-matrix connections are both stiffness dependent and influenced by Notch signaling. We conclude that mechanotransduction of Notch activation is modulated by substrate stiffness, highlighting the role of substrate rigidity as an important cue for signaling. This might have implications in pathological situations associated with stiffening of the extracellular matrix, such as tumor growth.


Assuntos
Células Endoteliais , Mecanotransdução Celular , Células Endoteliais/metabolismo , Transdução de Sinais/fisiologia , Diferenciação Celular , Matriz Extracelular/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Neovascularização Fisiológica/fisiologia
3.
J Cell Sci ; 135(6)2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35274126

RESUMO

Liver cancers, including hepatocellular carcinoma (HCC), are the second leading cause of cancer death worldwide, and novel therapeutic strategies are still highly needed. Recently, the endolysosomal cation channel TRPML1 (also known as MCOLN1) has gained focus in cancer research because it represents an interesting novel target. We utilized the recently developed isoform-selective TRPML1 activator ML1-SA1 and the CRISPR/Cas9 system to generate tools for overactivation and loss-of-function studies on TRPML1 in HCC. After verification of our tools, we investigated the role of TRPML1 in HCC by studying proliferation, apoptosis and proteomic alterations. Furthermore, we analyzed mitochondrial function in detail by performing confocal and transmission electron microscopy combined with SeahorseTM and Oroboros® functional analysis. We report that TRPML1 overactivation mediated by a novel, isoform-selective small-molecule activator induces apoptosis by impairing mitochondrial function in a Ca2+-dependent manner. Additionally, TRPML1 loss-of-function deregulates mitochondrial renewal, which leads to proliferation impairment. Thus, our study reveals a novel role for TRPML1 as regulator of mitochondrial function and its modulators as promising molecules for novel therapeutic options in HCC therapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Canais de Potencial de Receptor Transitório , Cálcio/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Lisossomos/metabolismo , Mitocôndrias/metabolismo , Proteômica , Canais de Potencial de Receptor Transitório/genética , Canais de Potencial de Receptor Transitório/metabolismo
4.
Chembiochem ; 25(13): e202400024, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38716781

RESUMO

Lagunamide A is a biologically active natural product with a yet unidentified molecular mode of action. Cellular studies revealed that lagunamide A is a potent inhibitor of cancer cell proliferation, promotes apoptosis and causes mitochondrial dysfunction. To decipher the cellular mechanism responsible for these effects, we utilized thermal protein profiling (TPP) and identified EYA3 as a stabilized protein in cells upon lagunamide A treatment. EYA3, involved in the DNA damage repair process, was functionally investigated via siRNA based knockdown studies and corresponding effects of lagunamide A on DNA repair were confirmed. Furthermore, we showed that lagunamide A sensitized tumor cells to treatment with the drug doxorubicin highlighting a putative therapeutic strategy.


Assuntos
Antineoplásicos , Apoptose , Proliferação de Células , Dano ao DNA , Reparo do DNA , Proteoma , Humanos , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Proteoma/efeitos dos fármacos , Proteoma/metabolismo , Proteoma/análise , Linhagem Celular Tumoral , Doxorrubicina/farmacologia
5.
Planta Med ; 90(7-08): 641-650, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38843802

RESUMO

Tropaeolum majus (garden nasturtium) is a plant with relevance in phytomedicine, appreciated not only for its pharmaceutical activities, but also for its beautiful leaves and flowers. Here, we investigated the phytochemical composition of senescent nasturtium leaves. Indeed, we identified yellow chlorophyll catabolites, also termed phylloxanthobilins, which we show to contribute to the bright yellow color of the leaves in the autumn season. Moreover, we isolated and characterized the phylloxanthobilins from T. majus, and report the identification of a pyro-phylloxanthobilin, so far only accessible by chemical synthesis. We show that the phylloxanthobilins contribute to bioactivities of T. majus by displaying strong anti-oxidative effects in vitro and in cellulo, and anti-inflammatory effects as assessed by COX-1 and COX-2 enzyme inhibition, similar to other bioactive ingredients of T. majus, isoquercitrin, and chlorogenic acid. Hence, phylloxanthobilins could play a role in the efficacy of T. majus in the treatment of urinary tract infections, an established indication of T. majus. With the results shown in this study, we aid in the completion of the phytochemical profile of T. majus by identifying additional bioactive natural products as relevant components of this medicinal plant.


Assuntos
Anti-Inflamatórios , Antioxidantes , Folhas de Planta , Tropaeolum , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Antioxidantes/farmacologia , Antioxidantes/química , Tropaeolum/química , Folhas de Planta/química , Ciclo-Oxigenase 2/metabolismo , Ciclo-Oxigenase 1/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Inibidores de Ciclo-Oxigenase/farmacologia , Inibidores de Ciclo-Oxigenase/química , Humanos , Clorofila , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/química
6.
Biophys J ; 121(1): 44-60, 2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34890578

RESUMO

Cell dispersion from a confined area is fundamental in a number of biological processes, including cancer metastasis. To date, a quantitative understanding of the interplay of single-cell motility, cell proliferation, and intercellular contacts remains elusive. In particular, the role of E- and N-cadherin junctions, central components of intercellular contacts, is still controversial. Combining theoretical modeling with in vitro observations, we investigate the collective spreading behavior of colonies of human cancer cells (T24). The spreading of these colonies is driven by stochastic single-cell migration with frequent transient cell-cell contacts. We find that inhibition of E- and N-cadherin junctions decreases colony spreading and average spreading velocities, without affecting the strength of correlations in spreading velocities of neighboring cells. Based on a biophysical simulation model for cell migration, we show that the behavioral changes upon disruption of these junctions can be explained by reduced repulsive excluded volume interactions between cells. This suggests that in cancer cell migration, cadherin-based intercellular contacts sharpen cell boundaries leading to repulsive rather than cohesive interactions between cells, thereby promoting efficient cell spreading during collective migration.


Assuntos
Caderinas , Neoplasias , Adesão Celular , Comunicação Celular , Movimento Celular , Proliferação de Células , Humanos
7.
Biol Chem ; 403(4): 421-431, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35224953

RESUMO

Since the first report on a yeast three-hybrid system, several approaches have successfully utilized different setups for discovering targets of small molecule drugs. Compared to broadly applied MS based target identification approaches, the yeast three-hybrid system represents a complementary method that allows for the straightforward identification of direct protein binders of selected small molecules. One major drawback of this system, however, is that the drug has to be taken up by the yeast cells in sufficient concentrations. Here, we report the establishment of a yeast three-hybrid screen in the deletion strain ABC9Δ, which is characterized by being highly permeable to small molecules. We used this system to screen for protein binding partners of ethinylestradiol, a widely used drug mainly for contraception and hormone replacement therapy. We identified procollagen-lysine 2-oxoglutarate 5-dioxygenase 2 (PLOD2 or lysyl hydroxylase, LH2) as a novel direct target and were able to confirm the interaction identified with the yeast three-hybrid system by a complementary method, affinity chromatography, to prove the validity of the hit. Furthermore, we provide evidence for an interaction between the drug and PLOD2 in vitro and in cellulo.


Assuntos
Etinilestradiol , Saccharomyces cerevisiae , Etinilestradiol/farmacologia , Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase/metabolismo , Ligação Proteica , Saccharomyces cerevisiae/metabolismo , Técnicas do Sistema de Duplo-Híbrido
8.
FASEB J ; 34(9): 11860-11882, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32652772

RESUMO

Sorafenib represents the current standard of care for patients with advanced-stage hepatocellular carcinoma (HCC). However, acquired drug resistance occurs frequently during therapy and is accompanied by rapid tumor regrowth after sorafenib therapy termination. To identify the mechanism of this therapy-limiting growth resumption, we established robust sorafenib resistance HCC cell models that exhibited mitochondrial dysfunction and chemotherapeutic crossresistance. We found a rapid relapse of tumor cell proliferation after sorafenib withdrawal, which was caused by renewal of mitochondrial structures alongside a metabolic switch toward high electron transport system (ETS) activity. The translation-inhibiting antibiotic tigecycline impaired the biogenesis of mitochondrial DNA-encoded ETS subunits and limited the electron acceptor turnover required for glutamine oxidation. Thereby, tigecycline prevented the tumor relapse in vitro and in murine xenografts in vivo. These results offer a promising second-line therapeutic approach for advanced-stage HCC patients with progressive disease undergoing sorafenib therapy or treatment interruption due to severe adverse events.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias Hepáticas/tratamento farmacológico , Sorafenibe/farmacologia , Tigeciclina/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Feminino , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Camundongos SCID , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Recidiva Local de Neoplasia/prevenção & controle , Inibidores da Síntese de Proteínas/farmacologia
9.
Arch Pharm (Weinheim) ; 354(10): e2100061, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34155668

RESUMO

Phyllobilins are a group of chlorophyll-derived bilin-type linear tetrapyrroles, generated in the process of chlorophyll breakdown. Since the first phyllobilin was isolated and characterized in 1991, more and more structures of these chlorophyll catabolites were identified alongside the biochemical players involved in chlorophyll breakdown. In the meantime, phyllobilins are known to occur in a large natural structural variety, and new modifications are still being discovered. Phyllobilins have been regarded as products of chlorophyll detoxification for a very long time, hence they have been completely overlooked as a natural product class in terms of their biological role or pharmacological activity. A change of this paradigm, however, is long overdue. Here, we review the current knowledge of the pharmacological activities of phyllobilins and give an overview of the diverse structural modifications, laying the groundwork for analyzing their role(s) as active components in medicinal plants.


Assuntos
Produtos Biológicos/farmacologia , Clorofila/farmacologia , Produtos Biológicos/química , Clorofila/química , Humanos , Plantas Medicinais/química
10.
Angew Chem Int Ed Engl ; 60(41): 22578-22584, 2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34310831

RESUMO

Chlorophyll and heme are among the "pigments of life", tetrapyrrolic structures, without which life on Earth would not be possible. Their catabolites, the phyllobilins and the bilins, respectively, share not only structural features, but also a similar story: Long considered waste products of detoxification processes, important bioactivities for both classes have now been demonstrated. For phyllobilins, however, research on physiological roles is sparse. Here, we introduce actin, the major component of the cytoskeleton, as the first discovered target of phyllobilins and as a novel target of bilins. We demonstrate the inhibition of actin dynamics in vitro and effects on actin and related processes in cancer cells. A direct interaction with G-actin is shown by in silico studies and confirmed by affinity chromatography. Our findings open a new chapter in bioactivities of tetrapyrroles-especially phyllobilins-for which they form the basis for broad implications in plant science, ecology, and physiology.


Assuntos
Actinas/antagonistas & inibidores , Clorofila/química , Heme/química , Pigmentos Biológicos/farmacologia , Tetrapirróis/farmacologia , Actinas/metabolismo , Humanos , Pigmentos Biológicos/química , Tetrapirróis/química
11.
J Cell Sci ; 131(10)2018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29724912

RESUMO

Developmental processes, such as angiogenesis, are associated with a constant remodeling of the actin cytoskeleton in response to different mechanical stimuli. The mechanosensitive transcription factors MRTF-A (MKL1) and YAP (also known as YAP1) are important mediators of this challenging adaptation process. However, it is as yet unknown whether both pathways respond in an identical or in a divergent manner to a given microenvironmental guidance cue. Here, we use a micropatterning approach to dissect single aspects of cellular behavior in a spatiotemporally controllable setting. Using the exemplary process of angiogenesis, we show that cell-cell contacts and adhesive surface area are shared regulatory parameters of MRTF and YAP on rigid 2D surfaces. By analyzing MRTF and YAP under laminar flow conditions and during cell migration on dumbbell-shaped microstructures, we demonstrate that they exhibit different translocation kinetics. In conclusion, our work promotes the application of micropatterning techniques as a cell biological tool to study mechanosensitive signaling in the context of angiogenesis.


Assuntos
Actinas/metabolismo , Vasos Sanguíneos/metabolismo , Técnicas Citológicas/métodos , Células Endoteliais da Veia Umbilical Humana/química , Células Endoteliais da Veia Umbilical Humana/metabolismo , Mecanotransdução Celular , Actinas/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Vasos Sanguíneos/química , Vasos Sanguíneos/crescimento & desenvolvimento , Humanos , Cinética , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Fisiológica , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição , Proteínas de Sinalização YAP
12.
Hepatology ; 69(1): 376-393, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30033593

RESUMO

Therapeutic options for patients with advanced-stage hepatocellular carcinoma (HCC) are very limited. The only approved first-line treatment is the multi-tyrosine kinase inhibitor sorafenib, which shows low response rates and severe side effects. In particular, the compensatory activation of growth factor receptors leads to chemoresistance and limits the clinical impact of sorafenib. However, combination approaches to improve sorafenib have failed. Here we investigate the inhibition of cyclin-dependent kinase 5 (Cdk5) as a promising combination strategy to improve sorafenib response in HCC. Combination of sorafenib with Cdk5 inhibition (genetic knockdown by short hairpin RNA or CRISPR/Cas9 and pharmacologic inhibition) synergistically impaired HCC progression in vitro and in vivo by inhibiting both tumor cell proliferation and migration. Importantly, these effects were mediated by a mechanism for Cdk5: A liquid chromatography-tandem mass spectrometry-based proteomic approach revealed that Cdk5 inhibition interferes with intracellular trafficking, a process crucial for cellular homeostasis and growth factor receptor signaling. Cdk5 inhibition resulted in an accumulation of enlarged vesicles and respective cargos in the perinuclear region, considerably impairing the extent and quality of growth factor receptor signaling. Thereby, Cdk5 inhibition offers a comprehensive approach to globally disturb growth factor receptor signaling that is superior to specific inhibition of individual growth factor receptors. Conclusion: Cdk5 inhibition represents an effective approach to improve sorafenib response and to prevent sorafenib treatment escape in HCC. Notably, Cdk5 is an addressable target frequently overexpressed in HCC, and with Dinaciclib, a clinically tested Cdk5 inhibitor is readily available. Thus, our study provides evidence for clinically evaluating the combination of sorafenib and Dinaciclib to improve the therapeutic situation for patients with advanced-stage HCC.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Quinase 5 Dependente de Ciclina/antagonistas & inibidores , Neoplasias Hepáticas/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Sorafenibe/uso terapêutico , Animais , Feminino , Humanos , Camundongos , Resultado do Tratamento , Células Tumorais Cultivadas
13.
Proc Natl Acad Sci U S A ; 114(41): E8595-E8602, 2017 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-28923947

RESUMO

Two-pore channels (TPCs) are endolysosomal cation channels. Two members exist in humans, TPC1 and TPC2. Functional roles associated with the ubiquitously expressed TPCs include VEGF-induced neoangiogenesis, LDL-cholesterol trafficking and degradation, physical endurance under fasting conditions, autophagy regulation, the acrosome reaction in sperm, cancer cell migration, and intracellular trafficking of pathogens such as Ebola virus or bacterial toxins (e.g., cholera toxin). In a genome-wide association study for variants associated with human pigmentation characteristics two coding variants of TPC2, rs35264875 (encoding M484L) and rs3829241 (encoding G734E), have been found to be associated with a shift from brown to blond hair color. In two recent follow-up studies a role for TPC2 in pigmentation has been further confirmed. However, these human polymorphic variants have not been functionally characterized until now. The development of endolysosomal patch-clamp techniques has made it possible to investigate directly ion channel activities and characteristics in isolated endolysosomal organelles. We applied this technique here to scrutinize channel characteristics of the polymorphic TPC2 variants in direct comparison with WT. We found that both polymorphisms lead to a gain of channel function by independent mechanisms. We next conducted a clinical study with more than 100 blond- and brown/black-haired individuals. We performed a genotype/phenotype analysis and subsequently isolated fibroblasts from WT and polymorphic variant carriers for endolysosomal patch-clamp experimentation to confirm key in vitro findings.


Assuntos
Canais de Cálcio/genética , Cabelo/química , Pigmentação/genética , Polimorfismo Genético , Canais de Cálcio/fisiologia , Estudo de Associação Genômica Ampla , Células HEK293 , Cabelo/metabolismo , Humanos , Técnicas de Patch-Clamp , Fenótipo
14.
Angew Chem Int Ed Engl ; 59(4): 1595-1600, 2020 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-31658409

RESUMO

Novel targets are needed for treatment of devastating diseases such as cancer. For decades, natural products have guided innovative therapies by addressing diverse pathways. Inspired by the potent cytotoxic bioactivity of myxobacterial vioprolides A-D, we performed in-depth studies on their mode of action. Based on its prominent potency against human acute lymphoblastic leukemia (ALL) cells, we conducted thermal proteome profiling (TPP) and deciphered the target proteins of the most active derivative vioprolide A (VioA) in Jurkat cells. Nucleolar protein 14 (NOP14), which is essential in ribosome biogenesis, was confirmed as a specific target of VioA by a suite of proteomic and biological follow-up experiments. Given its activity against ALL cells compared to healthy lymphocytes, VioA exhibits unique therapeutic potential for anticancer therapy through a novel mode of action.


Assuntos
Produtos Biológicos/química , Proteínas Nucleares/química , Humanos , Ribossomos/metabolismo
15.
Cell Commun Signal ; 17(1): 87, 2019 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-31358011

RESUMO

BACKGROUND: The understanding of lysosomes has been expanded in recent research way beyond their view as cellular trash can. Lysosomes are pivotal in regulating metabolism, endocytosis and autophagy and are implicated in cancer. Recently it was discovered that the lysosomal V-ATPase, which is known to induce apoptosis, interferes with lipid metabolism in cancer, yet the interplay between these organelles is poorly understood. METHODS: LC-MS/MS analysis was performed to investigate lipid distribution in cells. Cell survival and signaling pathways were analyzed by means of cell biological methods (qPCR, Western Blot, flow cytometry, CellTiter-Blue). Mitochondrial structure was analyzed by confocal imaging and electron microscopy, their function was determined by flow cytometry and seahorse measurements. RESULTS: Our data reveal that interfering with lysosomal function changes composition and subcellular localization of triacylglycerids accompanied by an upregulation of PGC1α and PPARα expression, master regulators of energy and lipid metabolism. Furthermore, cardiolipin content is reduced driving mitochondria into fission, accompanied by a loss of membrane potential and reduction in oxidative capacity, which leads to a deregulation in cellular ROS and induction of mitochondria-driven apoptosis. Additionally, cells undergo a metabolic shift to glutamine dependency, correlated with the fission phenotype and sensitivity to lysosomal inhibition, most prominent in Ras mutated cells. CONCLUSION: This study sheds mechanistic light on a largely uninvestigated triangle between lysosomes, lipid metabolism and mitochondrial function. Insight into this organelle crosstalk increases our understanding of mitochondria-driven cell death. Our findings furthermore provide a first hint on a connection of Ras pathway mutations and sensitivity towards lysosomal inhibitors.


Assuntos
Morte Celular , Metabolismo dos Lipídeos , Mitocôndrias/metabolismo , Muramidase/metabolismo , Linhagem Celular Tumoral , Humanos , Estresse Oxidativo , ATPases Vacuolares Próton-Translocadoras/antagonistas & inibidores
16.
J Nat Prod ; 82(7): 1961-1970, 2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31260301

RESUMO

Actin is a protein of central importance for many cellular key processes. It is regulated by local interactions with a large number of actin binding proteins (ABPs). Various compounds are known to either increase or decrease the polymerization dynamics of actin. However, no actin binding compound has been developed for clinical applications yet because of selectivity issues. We provide a crystal structure of the natural product chivosazole A (ChivoA) bound to actin and show that-in addition to inhibiting nucleation, polymerization, and severing of F-actin filaments-it selectively modulates binding of ABPs to G-actin: Although unphysiological actin dimers are induced by ChivoA, interaction with gelsolin, profilin, cofilin, and thymosin-ß4 is inhibited. Moreover, ChivoA causes transcriptional effects differing from latrunculin B, an actin binder with a different binding site. Our data show that ChivoA and related compounds could serve as scaffolds for the development of actin binding molecules selectively targeting specific actin functions.


Assuntos
Actinas/metabolismo , Macrolídeos/farmacologia , Sítios de Ligação , Cristalografia por Raios X , Células Endoteliais da Veia Umbilical Humana , Humanos , Estrutura Molecular , Ligação Proteica
17.
Cell Mol Life Sci ; 75(24): 4539-4555, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30206640

RESUMO

Actin has emerged as a versatile regulator of gene transcription. Cytoplasmatic actin regulates mechanosensitive-signaling pathways such as MRTF-SRF and Hippo-YAP/TAZ. In the nucleus, both polymerized and monomeric actin directly interfere with transcription-associated molecular machineries. Natural actin-binding compounds are frequently used tools to study actin-related processes in cell biology. However, their influence on transcriptional regulation and intranuclear actin polymerization is poorly understood to date. Here, we analyze the effects of two representative actin-binding compounds, Miuraenamide A (polymerizing properties) and Latrunculin B (depolymerizing properties), on transcriptional regulation in primary cells. We find that actin stabilizing and destabilizing compounds inversely shift nuclear actin levels without a direct influence on polymerization state and intranuclear aspects of transcriptional regulation. Furthermore, we identify Miuraenamide A as a potent inducer of G-actin-dependent SRF target gene expression. In contrast, the F-actin-regulated Hippo-YAP/TAZ axis remains largely unaffected by compound-induced actin aggregation. This is due to the inability of AMOTp130 to bind to the amorphous actin aggregates resulting from treatment with miuraenamide. We conclude that actin-binding compounds predominantly regulate transcription via their influence on cytoplasmatic G-actin levels, while transcriptional processes relying on intranuclear actin polymerization or functional F-actin networks are not targeted by these compounds at tolerable doses.


Assuntos
Actinas/efeitos dos fármacos , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Depsipeptídeos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Tiazolidinas/farmacologia , Transcrição Gênica/efeitos dos fármacos , Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Núcleo Celular/metabolismo , Células Cultivadas , Citoplasma/efeitos dos fármacos , Citoplasma/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Camundongos , Células NIH 3T3 , Transativadores/metabolismo
18.
Br J Cancer ; 116(7): 912-922, 2017 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-28222068

RESUMO

BACKGROUND: Tumour-initiating cells (TICs) account for chemoresistance, tumour recurrence and metastasis, and therefore represent a major problem in tumour therapy. However, strategies to address TICs are limited. Recent studies indicate Cdk5 as a promising target for anti-cancer therapy and Cdk5 has recently been associated with epithelial-mesenchymal transition (EMT). However, a role of Cdk5 in TICs has not been described yet. METHODS: Expression of Cdk5 in human cancer tissue was analysed by staining of a human tissue microarray (TMA). Functional effects of Cdk5 overexpression, genetic knockdown by siRNA and shRNA, and pharmacologic inhibition by the small molecule roscovitine were tested in migration, invasion, cell death, and tumorsphere assays and in tumour establishment in vivo. For mechanistic studies, molecular biology methods were applied. RESULTS: In fact, here we pin down a novel function of Cdk5 in TICs: knockdown and pharmacological inhibition of Cdk5 impaired tumorsphere formation and reduced tumour establishment in vivo. Conversely, Cdk5 overexpression promoted tumorsphere formation which was in line with increased expression of Cdk5 in human breast cancer tissues as shown by staining of a human TMA. In order to understand how Cdk5 inhibition affects tumorsphere formation, we identify a role of Cdk5 in detachment-induced cell death: Cdk5 inhibition induced apoptosis in tumorspheres by stabilizing the transcription factor Foxo1 which results in increased levels of the pro-apoptotic protein Bim. CONCLUSIONS: In summary, our study elucidates a Cdk5-Foxo1-Bim pathway in cell death in tumorspheres and suggests Cdk5 as a potential target to address TICs.


Assuntos
Apoptose , Neoplasias da Mama/patologia , Quinase 5 Dependente de Ciclina/antagonistas & inibidores , Transição Epitelial-Mesenquimal , Células-Tronco Neoplásicas/patologia , Animais , Western Blotting , Neoplasias da Mama/enzimologia , Neoplasias da Mama/genética , Adesão Celular , Ciclo Celular , Movimento Celular , Proliferação de Células , Quinase 5 Dependente de Ciclina/genética , Quinase 5 Dependente de Ciclina/metabolismo , Feminino , Humanos , Técnicas Imunoenzimáticas , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Células-Tronco Neoplásicas/enzimologia , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Arterioscler Thromb Vasc Biol ; 36(12): 2346-2357, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27737863

RESUMO

OBJECTIVE: Cell-matrix interactions are crucial for regulating cellular activities, such as migration. This is of special importance for morphogenic processes, such as angiogenesis (the development of new blood vessels). Most of our understanding of cell migration relies on 2-dimensional (2D) experiments. However, the awareness that 3D settings might elicit different results has increased. Knowledge about endothelial cell (EC) behavior in 3D environments and the influence of matrix composition on EC migration, in particular, is still limited. APPROACH AND RESULTS: We characterize the migration of single ECs through 2 structurally different hydrogels: spongy Matrigel and fibrillar collagen I. Our observations reveal an elongated migration phenotype in Matrigel and a rounded phenotype with pronounced cell blebs (blebs >2 µm) in collagen I, which have not previously been described in ECs. Directed migration seems to depend on Rac1 and Cdc42 in collagen, but not in Matrigel (shown using appropriate pharmacological inhibitors). By applying anti-integrin antibodies and supplementing laminin in collagen gels, we identify laminin as the main determinant of the elongated phenotype. Laminin seems to induce a morphological switch between modes of migration. As an in situ proof of principle, we performed live imaging of EC migration during vascular growth in a murine retina in the absence and presence of anti-integrin antibodies. CONCLUSIONS: We show that, surprisingly, ECs can evade the pharmacological inhibition of central signaling pathways involved in migration (contractility, small GTPases, and proteolysis) by shifting gears between modes of migration. This finding indicates an unexpected contextual plasticity of EC behavior.


Assuntos
Quimiotaxia , Colágeno Tipo I/metabolismo , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Laminina/metabolismo , Proteoglicanas/metabolismo , Animais , Forma Celular , Células Cultivadas , Microambiente Celular , Combinação de Medicamentos , Módulo de Elasticidade , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Humanos , Hidrogéis , Camundongos Transgênicos , Microscopia de Vídeo , Fenótipo , Ligação Proteica , Proteólise , Neovascularização Retiniana/metabolismo , Neovascularização Retiniana/fisiopatologia , Vasos Retinianos/metabolismo , Transdução de Sinais , Fatores de Tempo , Imagem com Lapso de Tempo , Transfecção , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo
20.
Bioorg Med Chem ; 24(2): 123-9, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26692350

RESUMO

Addressing the actin cytoskeleton as future anticancer target can be an innovative chemotherapeutic approach to combat malignancies. Doliculide is a potent stabilizer of actin filaments and can be used as tool and therapeutic lead in cancer research. Though a variety of molecules are known to bind to actin and lead to either its over- or depolymerization little is known about the pharmacological consequences of these effects within the cancer cell. In this work we used p53 wild-type cells to dissect the reaction of these cells towards subtoxic doses of doliculide. We could show that doliculide leads to a transient change in actin cytoskeleton dynamics that are reversible. The cells react towards the treatment with the induction of premature senescence, an established anti-cancer mechanism, in concentrations that are not cytotoxic. Furthermore, we investigated the signaling pathways that are involved in the induction and maintenance of senescence by a pathway directed mRNA PCR-array. This analysis revealed that under doliculide treatment up to 13% of senescence related genes are altered. Taken together, our data provide evidence for an antitumoral potential of actin binding agents in p53 wild type cells and brings the strategy of targeting the actin cytoskeleton closer to clinical application.


Assuntos
Actinas/metabolismo , Antineoplásicos/farmacologia , Senescência Celular/efeitos dos fármacos , Depsipeptídeos/metabolismo , Depsipeptídeos/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Actinas/química , Antineoplásicos/química , Antineoplásicos/metabolismo , Sítios de Ligação , Proliferação de Células/efeitos dos fármacos , Depsipeptídeos/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Células Hep G2 , Humanos , Células MCF-7 , Reação em Cadeia da Polimerase , Relação Estrutura-Atividade , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA