Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Neurosci ; 37(11): 3072-3084, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28188219

RESUMO

Neurogenesis is essential to brain development and plays a central role in the response to brain injury. Stroke and head trauma stimulate proliferation of endogenous neural stem cells (NSCs); however, the survival of young neurons is sharply reduced by postinjury inflammation. Cellular mitochondria are critical to successful neurogenesis and are a major target of inflammatory injury. Mitochondrial protection was shown to improve survival of young neurons. This study tested whether reducing cellular microRNA-210 (miR-210) would enhance mitochondrial function and improve survival of young murine neurons under inflammatory conditions. Several studies have demonstrated the potential of miR-210 inhibition to enhance and protect mitochondrial function through upregulation of mitochondrial proteins. Here, miR-210 inhibition significantly increased neuronal survival and protected the activity of mitochondrial enzymes cytochrome c oxidase and aconitase in differentiating NSC cultures exposed to inflammatory mediators. Unexpectedly, we found that reducing miR-210 significantly attenuated NSC proliferation upon induction of differentiation. Further investigation revealed that increased mitochondrial function suppressed the shift to primarily glycolytic metabolism and reduced mitochondrial length characteristic of dividing cells. Activation of AMP-regulated protein kinase-retinoblastoma signaling is important in NSC proliferation and the reduction of this activation observed by miR-210 inhibition is one mechanism contributing to the reduced proliferation. Postinjury neurogenesis occurs as a burst of proliferation that peaks in days, followed by migration and differentiation over weeks. Our studies suggest that mitochondrial protective miR-210 inhibition should be delayed until after the initial burst of proliferation, but could be beneficial during the prolonged differentiation stage.SIGNIFICANCE STATEMENT Increasing the success of endogenous neurogenesis after brain injury holds therapeutic promise. Postinjury inflammation markedly reduces newborn neuron survival. This study found that enhancement of mitochondrial function by reducing microRNA-210 (miR-210) levels could improve survival of young neurons under inflammatory conditions. miR-210 inhibition protected the activity of mitochondrial enzymes cytochrome c oxidase and aconitase. Conversely, we observed decreased precursor cell proliferation likely due to suppression of the AMP-regulated protein kinase-retinoblastoma axis with miR-210 inhibition. Therefore, mitochondrial protection is a double-edged sword: early inhibition reduces proliferation, but inhibition later significantly increases neuroblast survival. This explains in part the contradictory published reports of the effects of miR-210 on neurogenesis.


Assuntos
Proliferação de Células , Sobrevivência Celular/imunologia , Encefalite/imunologia , MicroRNAs/imunologia , Mitocôndrias/imunologia , Neurogênese/imunologia , Neurônios/imunologia , Animais , Citocinas/imunologia , Encefalite/patologia , Feminino , Inflamação/imunologia , Inflamação/patologia , Masculino , Camundongos , Mitocôndrias/patologia , Neurônios/patologia
2.
J Neurosci Res ; 93(11): 1703-12, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26147710

RESUMO

Recent studies have demonstrated that neural stem cell (NSC) culture at physiologically normoxic conditions (2-5% O2) is advantageous in terms of neuronal differentiation and survival. Neuronal differentiation is accompanied by a remarkable shift to mitochondrial oxidative metabolism compared with preferentially glycolytic metabolism of proliferating cells. However, metabolic changes induced by growth in a normoxic (5%) O2 culture environment in NSCs have been minimally explored. This study demonstrates that culturing under 5% O2 conditions results in higher levels of mitochondrial oxidative metabolism, decreased glycolysis, and reduced levels of reactive oxygen species in NSC cultures. Inflammation is one of the major environmental factors limiting postinjury NSC neuronal differentiation and survival. Our results show that NSCs differentiated under 5% O2 conditions possess better resistance to in vitro inflammatory injury compared with those exposed to 20% O2. The present work demonstrates that lower, more physiologically normal O2 levels support metabolic changes induced during NSC neuronal differentiation and provide increased resistance to inflammatory injury, thus highlighting O2 tension as an important determinant of cell fate and survival in various stem cell therapies.


Assuntos
Técnicas de Cultura de Células/métodos , Diferenciação Celular/fisiologia , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Oxigênio/farmacologia , Animais , Apoptose/fisiologia , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Glicólise/efeitos dos fármacos , Glicólise/fisiologia , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Inflamação/metabolismo , Camundongos
3.
J Neurosci ; 30(37): 12242-51, 2010 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-20844120

RESUMO

The impairment of hippocampal neurogenesis has been linked to the pathogenesis of neurological disorders from chronic neurodegenerative disease to the progressive cognitive impairment of children who receive brain irradiation. Numerous studies provide evidence that inflammation downregulates neurogenesis, with multiple factors contributing to this impairment. Although mitochondria are one of the primary targets of inflammatory injury, the role of mitochondrial function in the modulation of neurogenesis remains relatively unstudied. In this study, we used neurosphere-derived cells to show that immature doublecortin (Dcx)-positive neurons are uniquely sensitive to mitochondrial inhibition, demonstrating rapid loss of mitochondrial potential and cell viability compared with glial cells and more mature neurons. Mitochondrial inhibition for 24 h produced no significant changes in astrocyte or oligodendrocyte viability, but reduced viability of mature neurons by 30%, and reduced survival of Dcx(+) cells by 60%. We demonstrate that protection of mitochondrial function with mitochondrial metabolites or the mitochondrial chaperone mtHsp75/mortalin partially reverses the inflammation-associated impairment of neurogenesis in vitro and in irradiated mice in vivo. Our findings highlight mitochondrial mechanisms involved in neurogenesis and indicate mitochondria as a potential target for protective strategies to prevent the impairment of neurogenesis by inflammation.


Assuntos
Metabolismo Energético/fisiologia , Mediadores da Inflamação/fisiologia , Mitocôndrias/patologia , Inibição Neural/fisiologia , Neurogênese/fisiologia , Animais , Diferenciação Celular/genética , Linhagem Celular , Células Cultivadas , Proteínas do Domínio Duplacortina , Proteína Duplacortina , Metabolismo Energético/genética , Proteínas de Choque Térmico HSP70/biossíntese , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/fisiologia , Mediadores da Inflamação/antagonistas & inibidores , Mediadores da Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/antagonistas & inibidores , Proteínas Associadas aos Microtúbulos/biossíntese , Mitocôndrias/genética , Mitocôndrias/fisiologia , Inibição Neural/genética , Neurogênese/genética , Neurônios/metabolismo , Neurônios/patologia , Neuropeptídeos/antagonistas & inibidores , Neuropeptídeos/biossíntese , Tiamina/administração & dosagem
4.
J Neurosci Res ; 89(12): 1989-96, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21910136

RESUMO

The process of neurogenesis continues throughout life, with thousands of new neurons generated every day in the mammalian brain. Impairment of hippocampal neurogenesis has been suggested to be involved in neurodegenerative conditions, including the cognitive decline associated with aging, Alzheimer's disease, Parkinson's disease, and ionizing radiation. These neurodegenerative conditions are all characterized by proinflammatory changes and increased numbers of activated microglia. Activated microglia produce a variety of proinflammatory factors, including interleukin-6, tumor necrosis factor-α, reactive oxygen species, and nitric oxide, all of which are antineurogenic. These same factors have also been shown to suppress mitochondrial function, but the role of mitochondria in neurogenesis remains barely investigated. This brief review summarizes the findings of several studies that support a role for mitochondrial impairment as part of the mechanism of the reduction of neurogenesis associated with inflammation.


Assuntos
Células-Tronco Adultas/metabolismo , Inflamação/fisiopatologia , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Células-Tronco Neurais/metabolismo , Neurogênese/fisiologia , Células-Tronco Adultas/patologia , Animais , Humanos , Degeneração Neural/fisiopatologia , Células-Tronco Neurais/patologia
5.
Glia ; 58(9): 1042-9, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20235222

RESUMO

Brief forebrain ischemia is a model of the delayed hippocampal neuronal loss seen in patients following cardiac arrest and resuscitation. Previous studies demonstrated that selective dysfunction of hippocampal CA1 subregion astrocytes occurs hours to days before delayed neuronal death. In this study we tested the strategy of directing protection to astrocytes to protect neighboring neurons from forebrain ischemia. Two well-studied protective proteins, heat shock protein 72 (Hsp72) or superoxide dismutase 2 (SOD2), were genetically targeted for expression in astrocytes using the astrocyte-specific human glial fibrillary acidic protein (GFAP) promoter. The expression constructs were injected stereotacticly immediately above the hippocampal CA1 region on one side of the rat brain two days prior to forebrain ischemia. Cell type specific expression was confirmed by double label immunohistochemistry. When the expression constructs were injected two days before transient forebrain ischemia, the loss of CA1 hippocampal neurons observed seven days later was significantly reduced on the injected side compared with controls. This neuroprotection was associated with significantly better preservation of astrocyte glutamate transporter-1 immunoreactivity at 5-h reperfusion and reduced oxidative stress. Improving the resistance of astrocytes to ischemic stress by targeting either the cytosolic or mitochondrial compartment was thus associated with preservation of CA1 neurons following forebrain ischemia. Targeting astrocytes is a promising strategy for neuronal preservation following cardiac arrest and resuscitation.


Assuntos
Astrócitos/fisiologia , Isquemia Encefálica/fisiopatologia , Região CA1 Hipocampal/fisiopatologia , Proteínas de Choque Térmico HSP72/metabolismo , Neurônios/fisiologia , Superóxido Dismutase/metabolismo , Animais , Região CA1 Hipocampal/patologia , Hipóxia Celular/fisiologia , Células Cultivadas , Transportador 2 de Aminoácido Excitatório/metabolismo , Proteína Glial Fibrilar Ácida/genética , Proteínas de Choque Térmico HSP72/genética , Humanos , Masculino , Camundongos , Neurônios/patologia , Estresse Oxidativo/fisiologia , Regiões Promotoras Genéticas , Prosencéfalo/patologia , Prosencéfalo/fisiopatologia , Ratos , Ratos Sprague-Dawley , Superóxido Dismutase/genética , Transfecção
6.
J Neurosci ; 27(16): 4253-60, 2007 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-17442809

RESUMO

Transient global ischemia, as with cardiac arrest, causes loss of CA1 hippocampal neurons 2-4 d later, whereas nearby dentate gyrus (DG) neurons are relatively resistant. Whether differential astrocyte vulnerability in ischemic injury contributes to CA1 neuronal death is uncertain. Here, we find that CA1 astrocytes are more sensitive to ischemia than DG astrocytes. In rats subjected to transient forebrain ischemia, CA1 astrocytes lose glutamate transport activity and immunoreactivity for GFAP, S100beta, and glutamate transporter GLT-1 within a few hours of reperfusion, but without astrocyte cell death. Oxidative stress may contribute to the observed selective CA1 changes, because CA1 astrocytes show early increases in mitochondrial free radicals and reduced mitochondrial membrane potential. Similar changes were not observed in DG astrocytes. Upregulation of GLT-1 expression in astrocytes with ceftriaxone protected CA1 neurons from forebrain ischemia. We suggest that greater oxidative stress and loss of GLT-1 function selectively in CA1 astrocytes is central to the well known delayed death of CA1 neurons.


Assuntos
Astrócitos/metabolismo , Transportador 2 de Aminoácido Excitatório/metabolismo , Hipocampo/fisiopatologia , Ataque Isquêmico Transitório/fisiopatologia , Animais , Astrócitos/patologia , Ceftriaxona/farmacologia , Sobrevivência Celular , Proteína Glial Fibrilar Ácida/metabolismo , Ácido Glutâmico/farmacocinética , Imuno-Histoquímica , Masculino , Potenciais da Membrana , Mitocôndrias/metabolismo , Estresse Oxidativo , Ratos , Ratos Sprague-Dawley , Regulação para Cima
7.
J Cereb Blood Flow Metab ; 28(5): 1009-16, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18091755

RESUMO

Mitochondrial heat shock protein 70 (mtHsp70/Hsp75/Grp75/mortalin/TRAP-1/PBP74) is an essential mitochondrial chaperone and a member of the heat shock protein 70 (HSP70) family. Although many studies have shown the protective properties of overexpression of the cytosolic inducible member of the HSP70 family, Hsp72, few studies have investigated the protective potential of Hsp75 against ischemic injury. Mitochondria are one of the primary targets of ischemic injury in astrocytes. In this study, we analyzed the effects of Hsp75 overexpression on cellular levels of reactive oxygen species (ROS), mitochondrial membrane potential, ATP levels, and viability during the ischemia-like conditions of oxygen-glucose deprivation (OGD) or glucose deprivation (GD) in primary astrocytic cultures. We show that Hsp75 overexpression decreases ROS production and preserves mitochondrial membrane potential during GD, and preserves ATP levels and cell viability during OGD. These findings indicate that Hsp75 can provide protection against ischemia-like in vitro injury and suggest that it should be further studied as a potential candidate for protection against ischemic injury.


Assuntos
Astrócitos/metabolismo , Astrócitos/patologia , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Proteínas de Choque Térmico HSP90/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Peróxido de Carbamida , Sobrevivência Celular/fisiologia , Células Cultivadas , Combinação de Medicamentos , Expressão Gênica/fisiologia , Glucose/farmacologia , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP90/genética , Humanos , Técnicas In Vitro , Potencial da Membrana Mitocondrial/fisiologia , Camundongos , Mitocôndrias/metabolismo , Estresse Oxidativo/fisiologia , Peróxidos/farmacologia , Transdução Genética , Ureia/análogos & derivados , Ureia/farmacologia
8.
FASEB J ; 21(14): 4077-86, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17656467

RESUMO

Age-related macular degeneration (AMD) is the leading cause of severe visual impairment in the elderly in developed countries. AMD patients have elevated levels of iron within the retinal pigment epithelia (RPE), which may lead to oxidative damage to mitochondria, disruption of retinal metabolism, and vision impairment or loss. As a possible model for iron-induced AMD, we investigated the effects of excess iron in cultured human fetal RPE cells on oxidant levels and mitochondrial cytochrome c oxidase (complex IV) function and tested for protection by N-tert-butyl hydroxylamine (NtBHA), a known mitochondrial antioxidant. RPE exposure to ferric ammonium citrate resulted in a time- and dose-dependent increase in intracellular iron, which increased oxidant production and decreased glutathione (GSH) levels and mitochondrial complex IV activity. NtBHA addition to iron-overloaded RPE cells led to a reduction of intracellular iron content, oxidative stress, and partial restoration of complex IV activity and GSH content. NtBHA might be useful in AMD due to its potential to reduce oxidative stress, mitochondrial damage, and age-related iron accumulation, which may damage normal RPE function and lead to loss of vision.


Assuntos
Antioxidantes/farmacologia , Células Epiteliais/efeitos dos fármacos , Hidroxilaminas/farmacologia , Sobrecarga de Ferro/metabolismo , Sobrecarga de Ferro/prevenção & controle , Degeneração Macular/tratamento farmacológico , Mitocôndrias/metabolismo , Epitélio Pigmentado Ocular/efeitos dos fármacos , Idoso , Antioxidantes/metabolismo , Células Cultivadas , Relação Dose-Resposta a Droga , Humanos , Hidroxilaminas/metabolismo , Ferro/metabolismo , Quelantes de Ferro/metabolismo , Quelantes de Ferro/farmacologia , Sobrecarga de Ferro/patologia , Degeneração Macular/metabolismo , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Epitélio Pigmentado Ocular/metabolismo , Epitélio Pigmentado Ocular/patologia , Retina/citologia , Retina/efeitos dos fármacos , Retina/metabolismo
9.
Invest Ophthalmol Vis Sci ; 46(11): 4302-10, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16249512

RESUMO

PURPOSE: To determine whether (R)-alpha-lipoic acid (LA) protects cultured human fetal retinal pigment epithelial (hfRPE) cells against oxidative injury and identify the pathways that may mediate protection. METHODS: Cultured hfRPE cells were pretreated with various concentrations of LA for 14 to 16 hours followed by treatment with a chemical oxidant, tert-butylhydroperoxide (t-BuOOH; 0.8 mM, 3 hours). Reactive oxygen species (ROS) production and cell viability were measured using H(2)DCF and MTT assays, respectively. RPE cells were evaluated with fluorescent dyes (SYTOX Orange and SYTO Green; Molecular Probes, Eugene, OR), which differentiate between live and dead cells. Apoptosis was visualized by using the TUNEL assay. Changes in mitochondrial membrane potential were detected by JC-1 dye. Intracellular levels of reduced glutathione (GSH) and oxidized glutathione (GSSG) were measured by HPLC. Regulation of gamma-glutamylcysteine ligase (GCL), the rate-controlling enzyme of GSH production, was assayed by RT-PCR. RESULTS: Pretreatment of hfRPE cells with LA, 0.2 mM and 0.5 mM, significantly reduced the levels of t-BuOOH-induced intracellular ROS, by 23% and 49%, respectively. LA (0.5 mM) prevented oxidant-induced cell death and apoptosis and also increased the viability of oxidant-treated hfRPE cells from 38% to 90% of control. LA upregulated the mRNA expression of GCL, and was protective against t-BuOOH-induced decreases in both mitochondrial membrane potential and intracellular levels of GSH and GSH/GSSG. CONCLUSIONS: The present study suggests that the protective effect of LA involves multiple pathways and that LA could be effective against age-associated increase in oxidative stress and mitochondrial dysfunction in RPE cells.


Assuntos
Antioxidantes/farmacologia , Estresse Oxidativo , Epitélio Pigmentado Ocular/efeitos dos fármacos , Ácido Tióctico/farmacologia , Apoptose , Sobrevivência Celular , Células Cultivadas , Cromatografia Líquida de Alta Pressão , Citoproteção/efeitos dos fármacos , Corantes Fluorescentes , Glutamato-Cisteína Ligase/genética , Glutationa/metabolismo , Dissulfeto de Glutationa/metabolismo , Humanos , Epitélio Pigmentado Ocular/citologia , Epitélio Pigmentado Ocular/metabolismo , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Regulação para Cima , terc-Butil Hidroperóxido/toxicidade
10.
FEBS Lett ; 587(6): 756-62, 2013 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-23395614

RESUMO

Recent studies suggest a link between mitochondria and proinflammatory cytokine generation. We previously demonstrated that overexpression of mitochondrial chaperone glucose-regulated protein75 (Grp75/mortalin) protects mitochondria. In this study we investigated the modulation of the lipopolisaccharide (LPS)-induced inflammatory response of microglial BV-2 cells by Grp75. We demonstrate that LPS-induced activation promotes significant metabolic changes suppressing mitochondrial function and increasing glycolysis. Overexpression of Grp75 attenuates the LPS-induced oxidative and metabolic responses, and suppresses proinflammatory activation, which depends on both NF-κB activation and lactate. Thus overexpression of Grp75 provides a novel strategy to modulate proinflammatory cytokine production of relevance to inflammation-associated pathologies.


Assuntos
Proteínas de Choque Térmico HSP70/genética , Proteínas de Membrana/genética , Microglia/metabolismo , Mitocôndrias/metabolismo , Chaperonas Moleculares/genética , Animais , Células Cultivadas , Citocinas/biossíntese , Regulação da Expressão Gênica/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Glicólise/genética , Proteínas de Choque Térmico HSP70/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Ácido Láctico/metabolismo , Lipopolissacarídeos/farmacologia , Proteínas de Membrana/metabolismo , Camundongos , Microglia/efeitos dos fármacos , Microglia/patologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Chaperonas Moleculares/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Plasmídeos , Transfecção
11.
J Cereb Blood Flow Metab ; 29(2): 365-74, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18985056

RESUMO

Mitochondria are known to be central to the cell's response to ischemia, because of their role in energy generation, in free radical generation, and in the regulation of apoptosis. Heat shock protein 75 (Hsp75/Grp75/mortalin/TRAP1) is a member of the HSP70 chaperone family, which is targeted to mitochondria. Overexpression of Hsp75 was achieved in rat brain by DNA transfection, and expression was observed in both astrocytes and neurons. Rats were subjected to 100 mins middle cerebral artery occlusion followed by assessment of infarct volume, neurological score, mitochondrial function, and levels of oxidative stress at 24 h reperfusion. Overexpression of Hsp75 reduced infarct area from 44.6%+/-21.1% to 25.7%+/-12.1% and improved neurological outcome significantly. This was associated with improved mitochondrial function as shown by protection of complex IV activity, marked reduction of free radical generation detected by hydroethidine fluorescence, reduction of lipid peroxidation detected by 4-hydroxy-2-nonenol immunoreactivity, and increased preservation of ATP levels. This suggests that targeting mitochondria for protection may be a useful strategy to reduce ischemic brain injury.


Assuntos
Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Mitocôndrias/metabolismo , Estresse Oxidativo , Trifosfato de Adenosina/metabolismo , Animais , Astrócitos/metabolismo , Isquemia Encefálica/genética , Transporte de Elétrons , Regulação da Expressão Gênica , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP90/genética , Metabolismo dos Lipídeos , Masculino , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley
12.
J Neurochem ; 102(4): 1383-94, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17488276

RESUMO

Much evidence suggests that astrocytes protect neurons against ischemic injury. Although astrocytes are more resistant to some insults than neurons, few studies offer insight into the real time changes of astrocytic protective functions with stress. Mitochondria are one of the primary targets of ischemic injury in astrocytes. We investigated the time course of changes in astrocytic ATP levels, plasma membrane potential, and glutamate uptake, a key protective function, induced by mitochondrial inhibition. Our results show that significant functional change precedes reduction in astrocytic viability with mitochondrial inhibition. Using the mitochondrial inhibitor fluorocitrate (FC, 0.25 mmol/L) that is preferentially taken by astrocytes we found that inhibition of astrocyte mitochondria increased vulnerability of co-cultured neurons to glutamate toxicity. In our studies, the rates of FC-induced astrocytic mitochondrial depolarization were accelerated in mixed astrocyte/neuron cultures. We hypothesized that the more rapid mitochondrial depolarization was promoted by an additional energetic demand imposed be the co-cultured neurons. To test this hypothesis, we exposed pure astrocytic cultures to 0.01-1 mmol/L aspartate as a metabolic load. Aspartate application accelerated the rates of FC-induced mitochondrial depolarization, and, at 1 mmol/L, induced astrocytic death, suggesting that strong energetic demands during ischemia can compromise astrocytic function and viability.


Assuntos
Astrócitos/ultraestrutura , Citratos/farmacologia , Mitocôndrias/efeitos dos fármacos , Neurônios/fisiologia , Fármacos Neuroprotetores/farmacologia , Trifosfato de Adenosina/metabolismo , Animais , Animais Recém-Nascidos , Astrócitos/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Células Cultivadas , Córtex Cerebral/citologia , Relação Dose-Resposta a Droga , Interações Medicamentosas , Ácido Glutâmico/farmacologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Potencial da Membrana Mitocondrial/fisiologia , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Camundongos , Mitocôndrias/fisiologia , Neurônios/efeitos dos fármacos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA