Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 19(8): e1011572, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37607182

RESUMO

Pathogen life history theory assumes a positive relationship between pathogen load in host tissues and pathogen transmission. Empirical evidence for this relationship is surprisingly rare due to the difficulty of measuring transmission for many pathogens. The comparative method, where a common host is experimentally infected with a set of pathogen strains, is a powerful approach for investigating the relationships between pathogen load and transmission. The validity of such experimental estimates of strain-specific transmission is greatly enhanced if they can predict the pathogen population strain structure in nature. Borrelia burgdorferi is a multi-strain, tick-borne spirochete that causes Lyme disease in North America. This study used 11 field-collected strains of B. burgdorferi, a rodent host (Mus musculus, C3H/HeJ) and its tick vector (Ixodes scapularis) to determine the relationship between pathogen load in host tissues and lifetime host-to-tick transmission (HTT). Mice were experimentally infected via tick bite with 1 of 11 strains. Lifetime HTT was measured by infesting mice with I. scapularis larval ticks on 3 separate occasions. The prevalence and abundance of the strains in the mouse tissues and the ticks were determined by qPCR. We used published databases to obtain estimates of the frequencies of these strains in wild I. scapularis tick populations. Spirochete loads in ticks and lifetime HTT varied significantly among the 11 strains of B. burgdorferi. Strains with higher spirochete loads in the host tissues were more likely to infect feeding larval ticks, which molted into nymphal ticks that had a higher probability of B. burgdorferi infection (i.e., higher HTT). Our laboratory-based estimates of lifetime HTT were predictive of the frequencies of these strains in wild I. scapularis populations. For B. burgdorferi, the strains that establish high abundance in host tissues and that have high lifetime transmission are the strains that are most common in nature.


Assuntos
Borrelia burgdorferi , Ixodes , Doença de Lyme , Animais , Camundongos , Camundongos Endogâmicos C3H , Larva
2.
Appl Environ Microbiol ; 90(7): e0050224, 2024 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-38864630

RESUMO

Mannheimia haemolytica is a major contributor to bovine respiratory disease (BRD), which causes substantial economic losses to the beef industry, and there is an urgent need for rapid and accurate diagnostic tests to provide evidence for treatment decisions and support antimicrobial stewardship. Diagnostic sequencing can provide information about antimicrobial resistance genes in M. haemolytica more rapidly than conventional diagnostics. Realizing the full potential of diagnostic sequencing requires a comprehensive understanding of the genetic markers of antimicrobial resistance. We identified genetic markers of resistance in M. haemolytica to macrolide class antibiotics commonly used for control of BRD. Genome sequences were determined for 99 M. haemolytica isolates with six different susceptibility phenotypes collected over 2 years from a feedlot in Saskatchewan, Canada. Known macrolide resistance genes estT, msr(E), and mph(E) were identified in most resistant isolates within predicted integrative and conjugative elements (ICEs). ICE sequences lacking antibiotic resistance genes were detected in 10 of 47 susceptible isolates. No resistance-associated polymorphisms were detected in ribosomal RNA genes, although previously unreported mutations in the L22 and L23 ribosomal proteins were identified in 12 and 27 resistant isolates, respectively. Pangenome analysis led to the identification of 79 genes associated with resistance to gamithromycin, of which 95% (75 of 79) had no functional annotation. Most of the observed phenotypic resistance was explained by previously identified antibiotic resistance genes, although resistance to the macrolides gamithromycin and tulathromycin was not explained in 39 of 47 isolates, demonstrating the need for continued surveillance for novel determinants of macrolide resistance.IMPORTANCEBovine respiratory disease is the costliest disease of beef cattle in North America and the most common reason for injectable antibiotic use in beef cattle. Metagenomic sequencing offers the potential to make economically significant reductions in turnaround time for diagnostic information for evidence-based selection of antibiotics for use in the feedlot. The success of diagnostic sequencing depends on a comprehensive catalog of antimicrobial resistance genes and other genome features associated with reduced susceptibility. We analyzed the genome sequences of isolates of Mannheimia haemolytica, a major bovine respiratory disease pathogen, and identified both previously known and novel genes associated with reduced susceptibility to macrolide class antimicrobials. These findings reinforce the need for ongoing surveillance for markers of antimicrobial resistance to support improved diagnostics and antimicrobial stewardship.


Assuntos
Antibacterianos , Macrolídeos , Mannheimia haemolytica , Macrolídeos/farmacologia , Saskatchewan , Antibacterianos/farmacologia , Mannheimia haemolytica/efeitos dos fármacos , Mannheimia haemolytica/genética , Animais , Bovinos , Marcadores Genéticos , Farmacorresistência Bacteriana/genética , Testes de Sensibilidade Microbiana , Doenças dos Bovinos/microbiologia , Doenças dos Bovinos/tratamento farmacológico
3.
Appl Environ Microbiol ; : e0129924, 2024 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-39503497

RESUMO

The Lyme disease spirochete Borrelia burgdorferi cycles between immature black-legged ticks (Ixodes scapularis) and vertebrate reservoir hosts, such as rodents. Larval ticks acquire spirochetes from infected hosts, and the resultant nymphs transmit the spirochetes to naïve hosts. This study investigated the impact of immunocompetence and host tissue spirochete load on host-to-tick transmission (HTT) of B. burgdorferi and the spirochete load inside immature I. scapularis ticks. Wild-type (WT) C57BL/6J mice and mice with severe combined immunodeficiency (SCID) were experimentally infected with B. burgdorferi. To measure HTT, WT and SCID mice were repeatedly infested with I. scapularis larvae, and ticks were sacrificed at three different developmental stages: engorged larvae, 1-month-old, and 12-month-old nymphs. The spirochete loads in immature ticks and mouse tissues were estimated using qPCR. In WT mice, HTT decreased from 90% to 65% over the course of the infection, whereas in the SCID mice, HTT was always 100%. Larvae that fed on SCID mice acquired a much larger dose of spirochetes compared to larvae that fed on WT mice. This difference in spirochete load persisted over tick development where nymphs that fed as larvae on SCID mice had significantly higher spirochete loads compared to their WT counterparts. HTT and the tick spirochete loads were strongly correlated with the mouse tissue spirochete loads. Our study shows that the host immune system (e.g., the presence of antibodies) influences HTT of B. burgdorferi and the spirochete load in immature I. scapularis ticks.IMPORTANCEThe tick-borne spirochete Borrelia burgdorferi causes Lyme disease in humans. This pathogen is maintained in nature by cycles involving black-legged ticks and wildlife hosts. The present study investigated the host factors that influence the transmission of B. burgdorferi from infected hosts to feeding ticks. We infected immunocompetent mice and immunocompromised mice (that cannot develop antibodies) with B. burgdorferi and repeatedly infested these mice with ticks. We determined the percentage of infected ticks and their spirochete loads. This percentage was 100% for immunocompromised mice but decreased from 90% to 65% over time (8 weeks) for immunocompetent mice. The tick spirochete load was much higher in ticks fed on immunocompromised mice compared to ticks fed on immunocompetent mice. In summary, the host immune system influences the transmission of B. burgdorferi from infected hosts to ticks and the spirochete loads in those ticks, which, in turn, determines the risk of Lyme disease for people.

4.
Mol Ecol ; 31(22): 5872-5888, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36112076

RESUMO

Experimental infections with different pathogen strains give insight into pathogen life history traits. The purpose of the present study was to compare variation in tissue infection prevalence and spirochete abundance among strains of Borrelia burgdorferi in a rodent host (Mus musculus, C3H/HeJ). Male and female mice were experimentally infected via tick bite with one of 12 strains. Ear tissue biopsies were taken at days 29, 59 and 89 postinfection, and seven tissues were collected at necropsy. The presence and abundance of spirochetes in the mouse tissues were measured by quantitative polymerase chain reaction. To determine the frequencies of our strains in nature, their multilocus sequence types were matched to published data sets. For the infected mice, 56.6% of the tissues were infected with B. burgdorferi. The mean spirochete load in the mouse necropsy tissues varied 4.8-fold between the strains. The mean spirochete load in the ear tissue biopsies decreased rapidly over time for some strains. The percentage of infected tissues in male mice (65.4%) was significantly higher compared to female mice (50.5%). The mean spirochete load in the seven tissues was 1.5× higher in male mice compared to female mice; this male bias was 15.3× higher in the ventral skin. Across the 11 strains, the mean spirochete loads in the infected mouse tissues were positively correlated with the strain-specific frequencies in their tick vector populations. The study suggests that laboratory-based estimates of pathogen abundance in host tissues can predict the strain composition of this important tick-borne pathogen in nature.


Assuntos
Grupo Borrelia Burgdorferi , Borrelia burgdorferi , Ixodes , Doença de Lyme , Carrapatos , Masculino , Feminino , Camundongos , Animais , Borrelia burgdorferi/genética , Doença de Lyme/epidemiologia , Doença de Lyme/veterinária , Roedores , Prevalência , Camundongos Endogâmicos C3H
5.
BMC Vet Res ; 18(1): 96, 2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35277172

RESUMO

BACKGROUND: Parvoviral enteritis (PE) is a viral gastrointestinal (GI) infection of dogs. Recovery from PE has been associated with persistent GI signs later in life. The objectives of this study were: (i) To determine whether dogs that have recovered from PE (post-parvo dogs) had an increased risk of persistent GI signs compared to uninfected control dogs. (ii) To investigate the lifestyle and clinicopathologic factors that are associated with persistent GI signs in post-parvo dogs. METHODS: A total of 86 post-parvo dogs and 52 age-matched control dogs were enrolled in this retrospective cohort study. Many years after hospitalization for PE, the owners were interviewed about the health and habits of their dogs using a questionnaire. We used generalized linear mixed effects models to test whether parvovirus enteritis and other risk factors are associated with owner-recognized general health problems in all dogs and with owner-recognized persistent GI signs in post-parvo dogs. RESULTS: The prevalence of persistent GI signs was significantly higher in post-parvo dogs compared to control dogs (57% vs 25%, P < 0.001). Markers of disease severity at the time of hospital admission such as neutropenia, low body temperature (BT), and treatment with an antiemetic medication (metoclopramide) were significant risk factors for persistent GI signs in post-parvo dogs. For example, PE-affected dogs that were hypothermic at hospital admission (BT of 37.2 °C) were 16.6 × more likely to have GI signs later in life compared to hyperthermic dogs (BT of 40.4 °C). The presence of persistent GI signs in post-parvo dogs was a risk factor for health problems in other organ systems. CONCLUSIONS: Parvovirus enteritis is a significant risk factor for persistent GI signs in dogs highlighting the importance of prevention. The risk factors identified in the present study may guide future investigations on the mechanisms that link parvovirus enteritis to chronic health problems in dogs.


Assuntos
Doenças do Cão , Enterite , Infecções por Parvoviridae , Parvovirus Canino , Parvovirus , Animais , Doenças do Cão/tratamento farmacológico , Cães , Enterite/tratamento farmacológico , Enterite/epidemiologia , Enterite/veterinária , Humanos , Infecções por Parvoviridae/diagnóstico , Infecções por Parvoviridae/epidemiologia , Infecções por Parvoviridae/veterinária , Estudos Retrospectivos , Fatores de Risco
6.
Appl Environ Microbiol ; 87(18): e0064121, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34191531

RESUMO

The microbiome of blood-sucking arthropods can shape their competence to acquire and maintain infections with vector-borne pathogens. We used a controlled study to investigate the interactions between Borrelia afzelii, which causes Lyme borreliosis in Europe, and the bacterial microbiome of Ixodes ricinus, its primary tick vector. We applied a surface sterilization treatment to I. ricinus eggs to produce dysbiosed tick larvae that had a low bacterial abundance and a changed bacterial microbiome compared to those of the control larvae. Dysbiosed and control larvae fed on B. afzelii-infected mice and uninfected control mice, and the engorged larvae were left to molt into nymphs. The nymphs were tested for B. afzelii infection, and their bacterial microbiome underwent 16S rRNA amplicon sequencing. Surprisingly, larval dysbiosis had no effect on the vector competence of I. ricinus for B. afzelii, as the nymphal infection prevalence and the nymphal spirochete load were the same between the dysbiosed group and the control group. The strong effect of egg surface sterilization on the tick bacterial microbiome largely disappeared once the larvae molted into nymphs. The most important determinant of the bacterial microbiome of I. ricinus nymphs was the B. afzelii infection status of the mouse on which the nymphs had fed as larvae. Nymphs that had taken their larval blood meal from an infected mouse had a less abundant but more diverse bacterial microbiome than the control nymphs. Our study demonstrates that vector-borne infections in the vertebrate host shape the microbiome of the arthropod vector. IMPORTANCE Many blood-sucking arthropods transmit pathogens that cause infectious disease. For example, Ixodes ricinus ticks transmit the bacterium Borrelia afzelii, which causes Lyme disease in humans. Ticks also have a microbiome, which can influence their ability to acquire and transmit tick-borne pathogens such as B. afzelii. We sterilized I. ricinus eggs with bleach, and the tick larvae that hatched from these eggs had a dramatically reduced and changed bacterial microbiome compared to that of control larvae. These larvae fed on B. afzelii-infected mice, and the resultant nymphs were tested for B. afzelii and for their bacterial microbiome. We found that our manipulation of the bacterial microbiome had no effect on the ability of the tick larvae to acquire and maintain populations of B. afzelii. In contrast, we found that B. afzelii infection had dramatic effects on the bacterial microbiome of I. ricinus nymphs. Our study demonstrates that infections in the vertebrate host can shape the tick microbiome.


Assuntos
Grupo Borrelia Burgdorferi , Ixodes/microbiologia , Doença de Lyme/transmissão , Animais , Etanol , Feminino , Larva/microbiologia , Camundongos Endogâmicos BALB C , Microbiota , Ninfa/microbiologia , Óvulo , Hipoclorito de Sódio , Esterilização
7.
Appl Environ Microbiol ; 85(23)2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31540991

RESUMO

Multistrain microbial pathogens often induce strain-specific antibody responses in their vertebrate hosts. Mothers can transmit antibodies to their offspring, which can provide short-term, strain-specific protection against infection. Few experimental studies have investigated this phenomenon for multiple strains of zoonotic pathogens occurring in wildlife reservoir hosts. The tick-borne bacterium Borrelia afzelii causes Lyme disease in Europe and consists of multiple strains that cycle between the tick vector (Ixodes ricinus) and vertebrate hosts, such as the bank vole (Myodes glareolus). We used a controlled experiment to show that female bank voles infected with B. afzelii via tick bite transmit protective antibodies to their offspring. To test the specificity of protection, the offspring were challenged using a natural tick bite challenge with either the maternal strain to which the mothers had been exposed or a different strain. The maternal antibodies protected the offspring against a homologous infectious challenge but not against a heterologous infectious challenge. The offspring from the uninfected control mothers were equally susceptible to both strains. Borrelia outer surface protein C (OspC) is an antigen that is known to induce strain-specific immunity. Maternal antibodies in the offspring reacted more strongly with homologous than with heterologous recombinant OspC, but other antigens may also mediate strain-specific immunity. Our study shows that maternal antibodies provide strain-specific protection against B. afzelii in an ecologically important rodent reservoir host. The transmission of maternal antibodies may have important consequences for the epidemiology of multistrain pathogens in nature.IMPORTANCE Many microbial pathogen populations consist of multiple strains that induce strain-specific antibody responses in their vertebrate hosts. Females can transmit these antibodies to their offspring, thereby providing them with short-term strain-specific protection against microbial pathogens. We investigated this phenomenon using multiple strains of the tick-borne microbial pathogen Borrelia afzelii and its natural rodent reservoir host, the bank vole, as a model system. We found that female bank voles infected with B. afzelii transmitted to their offspring maternal antibodies that provided highly efficient but strain-specific protection against a natural tick bite challenge. The transgenerational transfer of antibodies could be a mechanism that maintains the high strain diversity of this tick-borne pathogen in nature.


Assuntos
Anticorpos Antiprotozoários/imunologia , Arvicolinae , Grupo Borrelia Burgdorferi/fisiologia , Imunidade Materno-Adquirida/imunologia , Doença de Lyme/imunologia , Doenças dos Roedores/imunologia , Zoonoses/imunologia , Animais , Doença de Lyme/parasitologia , Doenças dos Roedores/parasitologia , Zoonoses/parasitologia
8.
Proc Biol Sci ; 285(1890)2018 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-30381382

RESUMO

Multiple-strain pathogens often establish mixed infections inside the host that result in competition between strains. In vector-borne pathogens, the competitive ability of strains must be measured in both the vertebrate host and the arthropod vector to understand the outcome of competition. Such studies could reveal the existence of trade-offs in competitive ability between different host types. We used the tick-borne bacterium Borrelia afzelii to test for competition between strains in the rodent host and the tick vector, and to test for a trade-off in competitive ability between these two host types. Mice were infected via tick bite with either one or two strains, and these mice were subsequently used to create ticks with single or mixed infections. Competition in the rodent host reduced strain-specific host-to-tick transmission and competition in the tick vector reduced the abundance of both strains. The strain that was competitively superior in host-to-tick transmission was competitively inferior with respect to bacterial abundance in the tick. This study suggests that in multiple-strain vector-borne pathogens there are trade-offs in competitive ability between the vertebrate host and the arthropod vector. Such trade-offs could play an important role in the coexistence of pathogen strains.


Assuntos
Grupo Borrelia Burgdorferi/fisiologia , Ixodes/microbiologia , Doença de Lyme/transmissão , Animais , Vetores Aracnídeos/microbiologia , Grupo Borrelia Burgdorferi/classificação , Grupo Borrelia Burgdorferi/genética , Feminino , Ixodes/crescimento & desenvolvimento , Estágios do Ciclo de Vida , Doença de Lyme/microbiologia , Camundongos Endogâmicos BALB C
9.
Proc Biol Sci ; 285(1884)2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30068677

RESUMO

The impact of a pathogen on the fitness and behaviour of its natural host depends upon the host-parasite relationship in a given set of environmental conditions. Here, we experimentally investigated the effects of Borrelia afzelii, one of the aetiological agents of Lyme disease in humans, on the fitness of its natural rodent host, the bank vole (Myodes glareolus), in semi-natural conditions with two contrasting host population densities. Our results show that B. afzelii can modify the reproductive success and spacing behaviour of its rodent host, whereas host survival was not affected. Infection impaired the breeding probability of large bank voles. Reproduction was hastened in infected females without alteration of the offspring size at birth. At low density, infected males produced fewer offspring, fertilized fewer females and had lower mobility than uninfected individuals. Meanwhile, the infection did not affect the proportion of offspring produced or the proportion of mating partner in female bank voles. Our study is the first to show that B. afzelii infection alters the reproductive success of the natural host. The effects observed could reflect the sickness behaviour due to the infection or they could be a consequence of a manipulation of the host behaviour by the bacteria.


Assuntos
Arvicolinae/microbiologia , Grupo Borrelia Burgdorferi/fisiologia , Reprodução/fisiologia , Doenças dos Roedores/microbiologia , Animais , Arvicolinae/fisiologia , Grupo Borrelia Burgdorferi/patogenicidade , Feminino , Interações Hospedeiro-Patógeno/fisiologia , Doença de Lyme/microbiologia , Masculino , Densidade Demográfica , Comportamento Sexual Animal/fisiologia
10.
Appl Environ Microbiol ; 83(3)2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27836839

RESUMO

Mixed or multiple-strain infections are common in vector-borne diseases and have important implications for the epidemiology of these pathogens. Previous studies have mainly focused on interactions between pathogen strains in the vertebrate host, but little is known about what happens in the arthropod vector. Borrelia afzelii and Borrelia garinii are two species of spirochete bacteria that cause Lyme borreliosis in Europe and that share a tick vector, Ixodes ricinus Each of these two tick-borne pathogens consists of multiple strains that are often differentiated using the highly polymorphic ospC gene. For each Borrelia species, we studied the frequencies and abundances of the ospC strains in a wild population of I. ricinus ticks that had been sampled from the same field site over a period of 3 years. We used quantitative PCR (qPCR) and 454 sequencing to estimate the spirochete load and the strain diversity within each tick. For B. afzelii, there was a negative relationship between the two most common ospC strains, suggesting the presence of competitive interactions in the vertebrate host and possibly the tick vector. The flat relationship between total spirochete abundance and strain richness in the nymphal tick indicates that the mean abundance per strain decreases as the number of strains in the tick increases. Strains with the highest spirochete load in the nymphal tick were the most common strains in the tick population. The spirochete abundance in the nymphal tick appears to be an important life history trait that explains why some strains are more common than others in nature. IMPORTANCE: Lyme borreliosis is the most common vector-borne disease in the Northern Hemisphere and is caused by spirochete bacteria that belong to the Borrelia burgdorferi sensu lato species complex. These tick-borne pathogens are transmitted among vertebrate hosts by hard ticks of the genus Ixodes Each Borrelia species can be further subdivided into genetically distinct strains. Multiple-strain infections are common in both the vertebrate host and the tick vector and can result in competitive interactions. To date, few studies on multiple-strain vector-borne pathogens have investigated patterns of cooccurrence and abundance in the arthropod vector. We demonstrate that the abundance of a given strain in the tick vector is negatively affected by the presence of coinfecting strains. In addition, our study suggests that the spirochete abundance in the tick is an important life history trait that can explain why some strains are more common in nature than others.


Assuntos
Antígenos de Bactérias/genética , Proteínas da Membrana Bacteriana Externa/genética , Grupo Borrelia Burgdorferi/fisiologia , Ixodes/microbiologia , Animais , Grupo Borrelia Burgdorferi/genética , Coinfecção/microbiologia , Europa (Continente) , Ixodes/crescimento & desenvolvimento , Doença de Lyme/microbiologia , Ninfa/crescimento & desenvolvimento , Ninfa/microbiologia
11.
BMC Vet Res ; 13(1): 217, 2017 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-28693561

RESUMO

BACKGROUND: Tick-borne encephalitis (TBE) is an important tick-borne disease in Europe. Detection of the TBE virus (TBEV) in local populations of Ixodes ricinus ticks is the most reliable proof that a given area is at risk for TBE, but this approach is time-consuming and expensive. A cheaper and simpler approach is to use immunology-based methods to screen vertebrate hosts for TBEV-specific antibodies and subsequently test the tick populations at locations with seropositive animals. RESULTS: The purpose of the present study was to use goats as sentinel animals to identify new risk areas for TBE in the canton of Valais in Switzerland. A total of 4114 individual goat sera were screened for TBEV-specific antibodies using immunological methods. According to our ELISA assay, 175 goat sera reacted strongly with TBEV antigen, resulting in a seroprevalence rate of 4.3%. The serum neutralization test confirmed that 70 of the 173 ELISA-positive sera had neutralizing antibodies against TBEV. Most of the 26 seropositive goat flocks were detected in the known risk areas in the canton of Valais, with some spread into the connecting valley of Saas and to the east of the town of Brig. One seropositive site was 60 km to the west of the known TBEV-endemic area. At two of the three locations where goats were seropositive, the local tick populations also tested positive for TBEV. CONCLUSION: The combined approach of screening vertebrate hosts for TBEV-specific antibodies followed by testing the local tick population for TBEV allowed us to detect two new TBEV foci in the canton of Valais. The present study showed that goats are useful sentinel animals for the detection of new TBEV risk areas.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos/isolamento & purificação , Encefalite Transmitida por Carrapatos/veterinária , Doenças das Cabras/epidemiologia , Animais , Anticorpos Antivirais/sangue , Encefalite Transmitida por Carrapatos/sangue , Encefalite Transmitida por Carrapatos/epidemiologia , Encefalite Transmitida por Carrapatos/virologia , Ensaio de Imunoadsorção Enzimática/veterinária , Feminino , Doenças das Cabras/sangue , Doenças das Cabras/virologia , Cabras , Ixodes/virologia , Masculino , Vigilância de Evento Sentinela/veterinária , Estudos Soroepidemiológicos , Suíça/epidemiologia
12.
Environ Microbiol ; 18(3): 833-45, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26411486

RESUMO

Vector-borne pathogens use a diversity of strategies to evade the vertebrate immune system. Co-feeding transmission is a potential immune evasion strategy because the vector-borne pathogen minimizes the time spent in the vertebrate host. We tested whether the Lyme disease pathogen, Borrelia afzelii, can use co-feeding transmission to escape the acquired immune response in the vertebrate host. We induced a strain-specific, protective antibody response by immunizing mice with one of two variants of OspC (A3 and A10), the highly variable outer surface protein C of Borrelia pathogens. Immunized mice were challenged via tick bite with B. afzelii strains A3 or A10 and infested with larval ticks at days 2 and 34 post-infection to measure co-feeding and systemic transmission respectively. Antibodies against a particular OspC variant significantly reduced co-feeding transmission of the targeted (homologous) strain but not the non-targeted (heterologous) strain. Cross-immunity between OspC antigens had no effect in co-feeding ticks but reduced the spirochaete load twofold in ticks infected via systemic transmission. In summary, OspC-specific antibodies reduced co-feeding transmission of a homologous but not a heterologous strain of B. afzelii. Co-feeding transmission allowed B. afzelii to evade the negative consequences of cross-immunity on the tick spirochaete load.


Assuntos
Anticorpos Antibacterianos/imunologia , Antígenos de Bactérias/imunologia , Proteínas da Membrana Bacteriana Externa/imunologia , Grupo Borrelia Burgdorferi/imunologia , Doença de Lyme/transmissão , Animais , Antígenos de Bactérias/administração & dosagem , Proteínas da Membrana Bacteriana Externa/administração & dosagem , Comportamento Alimentar , Ixodes/microbiologia , Ixodes/fisiologia , Doença de Lyme/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Vacinação
13.
Appl Environ Microbiol ; 81(22): 7740-52, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26319876

RESUMO

Many vector-borne pathogens consist of multiple strains that circulate in both the vertebrate host and the arthropod vector. Characterization of the community of pathogen strains in the arthropod vector is therefore important for understanding the epidemiology of mixed vector-borne infections. Borrelia afzelii and B. garinii are two species of tick-borne bacteria that cause Lyme disease in humans. These two sympatric pathogens use the same tick, Ixodes ricinus, but are adapted to different classes of vertebrate hosts. Both Borrelia species consist of multiple strains that are classified using the highly polymorphic ospC gene. Vertebrate cross-immunity against the OspC antigen is predicted to structure the community of multiple-strain Borrelia pathogens. Borrelia isolates were cultured from field-collected I. ricinus ticks over a period spanning 11 years. The Borrelia species of each isolate was identified using a reverse line blot (RLB) assay. Deep sequencing was used to characterize the ospC communities of 190 B. afzelii isolates and 193 B. garinii isolates. Infections with multiple ospC strains were common in ticks, but vertebrate cross-immunity did not influence the strain structure in the tick vector. The pattern of genetic variation at the ospC locus suggested that vertebrate cross-immunity exerts strong selection against intermediately divergent ospC alleles. Deep sequencing found that more than 50% of our isolates contained exotic ospC alleles derived from other Borrelia species. Two alternative explanations for these exotic ospC alleles are cryptic coinfections that were not detected by the RLB assay or horizontal transfer of the ospC gene between Borrelia species.


Assuntos
Antígenos de Bactérias/genética , Proteínas da Membrana Bacteriana Externa/genética , Grupo Borrelia Burgdorferi/genética , Grupo Borrelia Burgdorferi/imunologia , Ixodes/microbiologia , Microbiota , Animais , Antígenos de Bactérias/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Variação Genética , Ixodes/crescimento & desenvolvimento , Ninfa/crescimento & desenvolvimento , Ninfa/microbiologia
14.
Oecologia ; 179(4): 1099-110, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26293680

RESUMO

Pathogens can drive host population dynamics. Chytridiomycosis is a fungal disease of amphibians that is caused by the fungus Batrachochytrium dendrobatidis (Bd). This pathogen has caused declines and extinctions in some host species whereas other host species coexist with Bd without suffering declines. In the early 1990s, Bd extirpated populations of the endangered common mistfrog, Litoria rheocola, at high-elevation sites, while populations of the species persisted at low-elevation sites. Today, populations have reappeared at many high-elevation sites where they presently co-exist with the fungus. We conducted a capture-mark-recapture (CMR) study of six populations of L. rheocola over 1 year, at high and low elevations. We used multistate CMR models to determine which factors (Bd infection status, site type, and season) influenced rates of frog survival, recapture, infection, and recovery from infection. We observed Bd-induced mortality of individual frogs, but did not find any significant effect of Bd infection on the survival rate of L. rheocola at the population level. Survival and recapture rates depended on site type and season. Infection rate was highest in winter when temperatures were favourable for pathogen growth, and differed among site types. The recovery rate was high (75.7-85.8%) across seasons, and did not differ among site types. The coexistence of L. rheocola with Bd suggests that (1) frog populations are becoming resistant to the fungus, (2) Bd may have evolved lower virulence, or (3) current environmental conditions may be inhibiting outbreaks of the fatal disease.


Assuntos
Doenças dos Animais/microbiologia , Anuros/microbiologia , Quitridiomicetos , Ecossistema , Micoses/microbiologia , Estações do Ano , Temperatura , Altitude , Animais , Quitridiomicetos/crescimento & desenvolvimento , Resistência à Doença , Dinâmica Populacional , Ranidae/microbiologia , Virulência
15.
Parasitology ; 142(2): 290-302, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25295405

RESUMO

This review examines the phenomenon of co-feeding transmission in tick-borne pathogens. This mode of transmission is critical for the epidemiology of several tick-borne viruses but its importance for Borrelia burgdorferi sensu lato, the causative agents of Lyme borreliosis, is still controversial. The molecular mechanisms and ecological factors that facilitate co-feeding transmission are therefore examined with particular emphasis on Borrelia pathogens. Comparison of climate, tick ecology and experimental infection work suggests that co-feeding transmission is more important in European than North American systems of Lyme borreliosis, which potentially explains why this topic has gained more traction in the former continent than the latter. While new theory shows that co-feeding transmission makes a modest contribution to Borrelia fitness, recent experimental work has revealed new ecological contexts where natural selection might favour co-feeding transmission. In particular, co-feeding transmission might confer a fitness advantage in the Darwinian competition among strains in mixed infections. Future studies should investigate the ecological conditions that favour the evolution of this fascinating mode of transmission in tick-borne pathogens.


Assuntos
Borrelia burgdorferi/fisiologia , Comportamento Alimentar/fisiologia , Doença de Lyme/microbiologia , Doença de Lyme/transmissão , Carrapatos/microbiologia , Carrapatos/fisiologia , Animais , Humanos , Especificidade da Espécie
16.
Ticks Tick Borne Dis ; 15(2): 102308, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38215632

RESUMO

Borrelia burgdorferi is a tick-borne spirochete that causes Lyme disease in humans. The host immune system controls the abundance of the spirochete in the host tissues. Recent work with immunocompetent Mus musculus mice strain C3H/HeJ found that males had a higher tissue infection prevalence and spirochete load compared to females. The purpose of this study was to determine whether host sex and acquired immunity interact to influence the prevalence and abundance of spirochetes in the tissues of the commonly used mouse strain C57BL/6. Wildtype (WT) mice and their SCID counterparts (C57BL/6) were experimentally infected with B. burgdorferi via tick bite. Ear biopsies were sampled at weeks 4, 8, and 12 post-infection (PI) and five tissues (left ear, ventral skin, heart, tibiotarsal joint of left hind leg, and liver) were collected at necropsy (16 weeks PI). The mean spirochete load in the tissues of the SCID mice was 260.4x higher compared to the WT mice. In WT mice, the infection prevalence in the ventral skin was significantly higher in males (40.0 %) compared to females (0.0 %), and the spirochete load in the rear tibiotarsal joint was significantly higher (4.3x) in males compared to females. In SCID mice, the spirochete load in the ventral skin was 200.0x higher in males compared to females, but there were no significant sex-specific difference in spirochete load in the other tissues (left ear, heart, tibiotarsal joint, or liver). Thus, the absence of acquired immunity greatly amplified the spirochete load in the ventral skin of male mice. It is important to note that the observed sex-specific differences in laboratory mice cannot be extrapolated to humans. Future studies should investigate the mechanisms underlying the male bias in the abundance of B. burgdorferi in the mouse skin.


Assuntos
Borrelia burgdorferi , Ixodes , Doença de Lyme , Humanos , Feminino , Masculino , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos SCID , Camundongos Endogâmicos C3H
17.
Appl Environ Microbiol ; 79(23): 7273-80, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24038700

RESUMO

Mixed infections have important consequences for the ecology and evolution of host-parasite interactions. In vector-borne diseases, interactions between pathogens occur in both the vertebrate host and the arthropod vector. Spirochete bacteria belonging to the Borrelia burgdorferi sensu lato genospecies complex are transmitted by Ixodes ticks and cause Lyme borreliosis in humans. In Europe, there is a high diversity of Borrelia pathogens, and the main tick vector, Ixodes ricinus, is often infected with multiple Borrelia genospecies. In the present study, we characterized the pairwise interactions between five B. burgdorferi sensu lato genospecies in a large data set of I. ricinus ticks collected from the same field site in Switzerland. We measured two types of pairwise interactions: (i) co-occurrence, whether double infections occurred more or less often than expected, and (ii) spirochete load additivity, whether the total spirochete load in double infections was greater or less than the sum of the single infections. Mixed infections of Borrelia genospecies specialized on different vertebrate reservoir hosts occurred less frequently than expected (negative co-occurrence) and had joint spirochete loads that were lower than the additive expectation (inhibition). In contrast, mixed infections of genospecies that share the same reservoir hosts were more common than expected (positive co-occurrence) and had joint spirochete loads that were similar to or greater than the additive expectation (facilitation). Our study suggests that the vertebrate host plays an important role in structuring the community of B. burgdorferi sensu lato genospecies inside the tick vector.


Assuntos
Grupo Borrelia Burgdorferi/classificação , Grupo Borrelia Burgdorferi/isolamento & purificação , Coinfecção/microbiologia , Ixodes/microbiologia , Animais , Carga Bacteriana , Suíça
18.
Microbiol Spectr ; : e0167523, 2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37676027

RESUMO

Many vector-borne pathogens establish multiple-strain infections in the vertebrate host and the arthropod vector. Multiple-strain infections in the host influence strain acquisition by naive vectors. Whether multiple-strain infections in the vector influence strain-specific transmission to naive hosts remains unknown. The spirochete, Borrelia afzelii, causes Lyme borreliosis and multiple-strain infections are common in both the tick vector and vertebrate host. Our study used two B. afzelii strains: Fin-Jyv-A3 and NE4049. Donor mice were infected with Fin-Jyv-A3 alone, NE4049 alone, or with both strains. Larval ticks fed on donor mice and molted into nymphal ticks infected with either strain or both strains. These nymphs were fed on test mice to determine whether multiple-strain infections in the nymph influence nymph-to-host transmission (NHT). Multiple-strain infection in the donor mice reduced the acquisition of both strains by ticks by 23%. Thus, a substantial fraction of infected nymphs from the multiple strain treatment were infected with the "wrong" competitor strain rather than the "right" focal strain. As a result, nymphs from the multiple strain treatment were 46% less likely to infect the test mice with the focal strain compared to nymphs from the single strain treatment. However, multiple-strain infection in the nymphal tick had no effect on the NHT of either strain. The nymphal spirochete load of Fin-Jyv-A3 was 1.9 times higher compared to NE4049. NHT of Fin-Jyv-A3 (79%) was 1.5 times higher compared to NE4049 (53%). Our study suggests that B. afzelii strains with higher nymphal spirochete loads have higher NHT. IMPORTANCE For many vector-borne pathogens, multiple-strain infections in the vertebrate host or arthropod vector are common. Multiple-strain infections in the host reduce strain acquisition by feeding vectors. Whether multiple-strain infections in the vector influence strain transmission to the host remains unknown. In our study, we used two strains of the tick-borne spirochete Borrelia afzelii, which causes Lyme borreliosis, to investigate whether multiple-strain infections in the nymphal tick influenced nymph-to-host transmission (NHT) of strains. Multiple-strain infections in mice reduced the acquisition of both B. afzelii strains by nymphal ticks. As a result, nymphs from the multiple strain treatment were less likely to infect naive test mice with the focal strain. Multiple-strain infection in the nymphal ticks did not influence the NHT of either strain. The strain with the higher bacterial abundance in the nymph had higher NHT. Our study suggests that pathogen abundance in the arthropod vector is important for vector-to-host transmission.

19.
Ticks Tick Borne Dis ; 13(6): 102058, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36288683

RESUMO

Lyme borreliosis is caused by the spirochete Borrelia burgdorferi and is transmitted among vertebrate hosts by Ixodes scapularis ticks in eastern North America. Treatment with topical corticosteroids increases the abundance of B. burgdorferi in the skin of lab mice that have been experimentally infected via needle inoculation. In the present study, female and male C3H/HeJ mice were infected with B. burgdorferi via nymphal tick bite. Infected mice were treated with clobetasol on the skin of the right hindleg on days 35 and 36 post-infection and euthanized at days -2, 1, 3, 5, and 7 post-treatment; a group of control mice was infected but not treated with clobetasol. The spirochete abundance was quantified in 8 mouse tissues including bladder, heart, left hindleg skin, right hindleg skin, dorsal skin, ventral skin, left ear and right ear. Averaged across the 8 mouse tissues, the abundance of B. burgdorferi on days 3 and 5 were 21.4x and 14.4x higher in mice treated with clobetasol compared to the untreated control mice, but there were large differences among tissues. There was a dramatic sex-specific effect of the clobetasol treatment; the peak abundance of B. burgdorferi in the skin (left hindleg, right hindleg, dorsal, ventral) was 72.6x higher in male mice compared to female mice. In contrast, there was little difference between the sexes in the tissue spirochete load in the ears, bladder, and heart. Topical application of clobetasol could increase the sensitivity of direct diagnostic methods (e.g., culture, PCR) to detect B. burgdorferi in host skin biopsies.

20.
Parasit Vectors ; 14(1): 168, 2021 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33743800

RESUMO

BACKGROUND: The incidence of Lyme borreliosis and other tick-borne diseases is increasing in Europe and North America. There is currently much interest in identifying the ecological factors that determine the density of infected ticks as this variable determines the risk of Lyme borreliosis to vertebrate hosts, including humans. Lyme borreliosis is caused by the bacterium Borrelia burgdorferi sensu lato (s.l.) and in western Europe, the hard tick Ixodes ricinus is the most important vector. METHODS: Over a 15-year period (2004-2018), we monitored the monthly abundance of I. ricinus ticks (nymphs and adults) and their B. burgdorferi s.l. infection status at four different elevations on a mountain in western Switzerland. We collected climate variables in the field and from nearby weather stations. We obtained data on beech tree seed production (masting) from the literature, as the abundance of Ixodes nymphs can increase dramatically 2 years after a masting event. We used generalized linear mixed effects models and AIC-based model selection to identify the ecological factors that influence inter-annual variation in the nymphal infection prevalence (NIP) and the density of infected nymphs (DIN). RESULTS: We found that the NIP decreased by 78% over the study period. Inter-annual variation in the NIP was explained by the mean precipitation in the present year, and the duration that the DNA extraction was stored in the freezer prior to pathogen detection. The DIN decreased over the study period at all four elevation sites, and the decrease was significant at the top elevation. Inter-annual variation in the DIN was best explained by elevation site, year, beech tree masting index 2 years prior and the mean relative humidity in the present year. This is the first study in Europe to demonstrate that seed production by deciduous trees influences the density of nymphs infected with B. burgdorferi s.l. and hence the risk of Lyme borreliosis. CONCLUSIONS: Public health officials in Europe should be aware that masting by deciduous trees is an important predictor of the risk of Lyme borreliosis.


Assuntos
Fagus/fisiologia , Ixodes/microbiologia , Doença de Lyme/transmissão , Ninfa/microbiologia , Sementes/fisiologia , Animais , Grupo Borrelia Burgdorferi , Clima , Feminino , Florestas , Humanos , Incidência , Doença de Lyme/etiologia , Doença de Lyme/microbiologia , Masculino , Densidade Demográfica , Suíça
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA