Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Vet Res ; 20(1): 65, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38395846

RESUMO

BACKGROUND: Bovine tuberculosis (bTB) is a chronic disease that results from infection with any member of the Mycobacterium tuberculosis complex. Infected animals are typically diagnosed with tuberculin-based intradermal skin tests according to World Organization of Animal Health which are presently in use. However, tuberculin is not suitable for use in BCG-vaccinated animals due to a high rate of false-positive reactions. Peptide-based defined skin test (DST) antigens have been identified using antigens (ESAT-6, CFP-10 and Rv3615c) which are absent from BCG, but their performance in buffaloes remains unknown. To assess the comparative performance of DST with the tuberculin-based single intradermal test (SIT) and the single intradermal comparative cervical test (SICCT), we screened 543 female buffaloes from 49 organized dairy farms in two districts of Haryana state in India. RESULTS: We found that 37 (7%), 4 (1%) and 18 (3%) buffaloes were reactors with the SIT, SICCT and DST tests, respectively. Of the 37 SIT reactors, four were positive with SICCT and 12 were positive with the DST. The results show that none of the animals tested positive with all three tests, and 6 DST positive animals were SIT negative. Together, a total of 43 animals were reactors with SIT, DST, or both, and the two assays showed moderate agreement (Cohen's Kappa 0.41; 95% Confidence Interval (CI): 0.23, 0.59). In contrast, only slight agreement (Cohen's Kappa 0.18; 95% CI: 0.02, 0.34) was observed between SIT and SICCT. Using a Bayesian latent class model, we estimated test specificities of 96.5% (95% CI, 92-99%), 99.7% (95% CI: 98-100%) and 99.0% (95% CI: 97-100%) for SIT, SICCT and DST, respectively, but considerably lower sensitivities of 58% (95% CI: 35-87%), 9% (95% CI: 3-21%), and 34% (95% CI: 18-55%) albeit with broad and overlapping credible intervals. CONCLUSION: Taken together, our investigation suggests that DST has a test specificity comparable with SICCT, and sensitivity intermediate between SIT and SICCT for the identification of buffaloes suspected of tuberculosis. Our study highlights an urgent need for future well-powered trials with detailed necropsy, with immunological and microbiological profiling of reactor and non-reactor animals to better define the underlying factors for the large observed discrepancies in assay performance, particularly between SIT and SICCT.


Assuntos
Bison , Doenças dos Bovinos , Mycobacterium bovis , Tuberculose Bovina , Feminino , Animais , Bovinos , Tuberculose Bovina/diagnóstico , Búfalos , Tuberculina , Teorema de Bayes , Vacina BCG , Teste Tuberculínico/veterinária , Sensibilidade e Especificidade
2.
Indian J Microbiol ; 58(1): 81-92, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29434401

RESUMO

Tuberculosis is a significant problem globally for domestic animals as well as captive and free ranging wild life. Rapid point of care (POC) serology kits are well suited for the diagnosis of TB in wild animals. However, wild animals are invariably exposed to environmental non-pathogenic mycobacterium species with the development of cross reacting antibodies. In the present study, POC TB diagnosis kit was developed using a combination of pathogenic Mycobacteria specific recombinant antigens and purified protein derivatives of pathogenic and non-pathogenic Mycobacteria. To benchmark the TB antibody detection kit, particularly in respect to specificity which could not be determined in wildlife due to the lack of samples from confirmed uninfected animals, we first tested well-characterized sera from 100 M. bovis infected and 100 uninfected cattle. Then we investigated the kit's performance using sera samples from wildlife, namely Sloth Bears (n = 74), Elephants (n = 9), Cervidae (n = 14), Felidae (n = 21), Cape buffalo (n = 2), Wild bear (n = 1) and Wild dog (n = 1).In cattle, a sensitivity of 81% and a specificity of 90% were obtained. The diagnostic sensitivity of the kit was 94% when the kit was tested using known TB positive sloth bear sera samples. 47.4% of the in-contact sloth bears turned seropositive using the rapid POC TB diagnostic kit. Seropositivity in other wild animals was 25% when the sera samples were tested using the kit. A point of care TB sero-diagnostic kit with the combination of proteins was developed and the kit was validated using the sera samples of wild animals.

3.
PLoS Comput Biol ; 11(2): e1004038, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25695736

RESUMO

Vaccination for the control of bovine tuberculosis (bTB) in cattle is not currently used within any international control program, and is illegal within the EU. Candidate vaccines, based upon Mycobacterium bovis bacillus Calmette-Guérin (BCG) all interfere with the action of the tuberculin skin test, which is used to determine if animals, herds and countries are officially bTB-free. New diagnostic tests that Differentiate Infected from Vaccinated Animals (DIVA) offer the potential to introduce vaccination within existing eradication programs. We use within-herd transmission models estimated from historical data from Great Britain (GB) to explore the feasibility of such supplemental use of vaccination. The economic impact of bovine Tuberculosis for farmers is dominated by the costs associated with testing, and associated restrictions on animal movements. Farmers' willingness to adopt vaccination will require vaccination to not only reduce the burden of infection, but also the risk of restrictions being imposed. We find that, under the intensive sequence of testing in GB, it is the specificity of the DIVA test, rather than the sensitivity, that is the greatest barrier to see a herd level benefit of vaccination. The potential negative effects of vaccination could be mitigated through relaxation of testing. However, this could potentially increase the hidden burden of infection within Officially TB Free herds. Using our models, we explore the range of the DIVA test characteristics necessary to see a protective herd level benefit of vaccination. We estimate that a DIVA specificity of at least 99.85% and sensitivity of >40% is required to see a protective benefit of vaccination with no increase in the risk of missed infection. Data from experimentally infected animals suggest that this target specificity could be achieved in vaccinates using a cocktail of three DIVA antigens while maintaining a sensitivity of 73.3% (95%CI: 61.9, 82.9%) relative to post-mortem detection.


Assuntos
Modelos Imunológicos , Mycobacterium bovis/imunologia , Vacinas contra a Tuberculose/imunologia , Tuberculose Bovina , Vacinação/estatística & dados numéricos , Criação de Animais Domésticos/legislação & jurisprudência , Animais , Bovinos , Biologia Computacional , Imunidade Coletiva , Legislação Veterinária , Vacinas contra a Tuberculose/administração & dosagem , Tuberculose Bovina/epidemiologia , Tuberculose Bovina/imunologia , Tuberculose Bovina/prevenção & controle , Reino Unido , Vacinação/veterinária
4.
Int Immunol ; 25(2): 91-8, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22968995

RESUMO

Although CD1d and NKT cells have been proposed to have highly conserved functions in mammals, data on functions of CD1d and NKT cells in species other than humans and rodents are lacking. Upon stimulation with the CD1d-presented synthetic antigen α-galactosylceramide, human and rodent type I invariant NKT cells release large amounts of cytokines. The two bovine CD1D (boCD1D) genes have structural features that suggest that they cannot be translated into functional proteins expressed on the cell surface. Here we provide evidence that despite an intron-exon structure and signal peptide that are different from all other known CD1 genes, boCD1D can be translated into a protein that is expressed on the cell surface. However, in vivo treatment of cattle (Bos taurus) with 0.1, 1, or 10 µg kg⁻¹ of the most commonly used α-galactosylceramide, which has a C26 fatty acid, did not lead to an increase in body temperature and serum cytokine levels of the animals. This lack of reactivity is not due to a complete inability of boCD1d to present glycosphingolipids because α-galactosylceramide variants with shorter fatty acids could be presented by boCD1d to human NKT cells in vitro. This suggests that the natural ligands of boCD1d are smaller lipids.


Assuntos
Antígenos CD1d/genética , Antígenos CD1d/imunologia , Ácidos Graxos/química , Galactosilceramidas/química , Galactosilceramidas/imunologia , Animais , Antígenos CD1d/biossíntese , Sequência de Bases , Temperatura Corporal , Bovinos , Linhagem Celular , Citocinas/sangue , Ácidos Graxos/imunologia , Expressão Gênica , Humanos , Ligantes , Camundongos , Células T Matadoras Naturais/imunologia
5.
Sci Rep ; 13(1): 2936, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36806813

RESUMO

The single and comparative intradermal tuberculin tests (SITT and CITT) are official in vivo tests for bovine tuberculosis (TB) diagnosis using bovine and avian purified protein derivatives (PPD-B and PPD-A). Infection with bacteria other than Mycobacterium tuberculosis complex (MTC) can result in nonspecific reactions to these tests. We evaluated the performance of the skin test with PPDs and new defined antigens in the guinea pig model. A standard dose (SD) of Rhodococcus equi, Nocardia sp., M. nonchromogenicum, M. monacense, M. intracellulare, M. avium subsp. paratuberculosis, M. avium subsp. avium, M. avium subsp. hominissuis, M. scrofulaceum, M. persicum, M. microti, M. caprae and M. bovis, and a higher dose (HD) of M. nonchromogenicum, M. monacense, M. intracellulare, M. avium subsp. paratuberculosis were tested using PPD-B, PPD-A, P22, ESAT-6-CFP-10-Rv3615c peptide cocktail long (PCL) and fusion protein (FP). The SD of R. equi, Nocardia sp., M. nonchromogenicum, M. monacense, M. intracellulare and M. avium subsp. paratuberculosis did not cause any reactions. The HD of M. nonchromogenicum, M. monacense, M. intracellulare, and M. avium subsp. paratuberculosis and the SD of M. avium subsp. hominissuis, M. scrofulaceum and M. persicum, caused nonspecific reactions (SIT). A CITT interpretation would have considered M. avium complex and M. scrofulaceum groups negative, but not all individuals from M. nonchromogenicum HD, M. monacense HD and M. persicum SD groups. Only animals exposed to M. bovis and M. caprae reacted to PCL and FP. These results support the advantage of complementing or replacing PPD-B to improve specificity without losing sensitivity.


Assuntos
Mycobacterium , Paratuberculose , Tuberculose Bovina , Animais , Cobaias , Bovinos , Tuberculina , Tuberculose Bovina/diagnóstico , Antígenos , Teste Tuberculínico
6.
Trop Anim Health Prod ; 44(3): 651-5, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21842135

RESUMO

Recently, we found that Holstein cattle (Bos taurus taurus) displayed higher skin test prevalence and disease severity compared to zebu (Bos taurus indicus) herd-mates kept under identical husbandry conditions in Ethiopia. To determine whether these susceptibility differences were patent at the level of the innate immune system, we infected monocytes from naïve Holstein or Sahiwal zebu cattle with either live virulent Mycobacterium tuberculosis or Mycobacterium bovis. The cytokine profile following infection was compared between the two breeds by measuring IL-1α, IL-6, IL-10, IL-12 and TNF-α as well as nitric oxide in culture supernatants. Our results suggested subtle differences in the cytokine profile because only infection-induced IL-6 production was significantly increased in monocytes from the more susceptible Holstein cattle.


Assuntos
Interleucinas/metabolismo , Monócitos/imunologia , Tuberculose Bovina/genética , Tuberculose Bovina/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Criação de Animais Domésticos , Animais , Bovinos , Células Cultivadas , Feminino , Predisposição Genética para Doença , Imunidade Inata , Monócitos/microbiologia , Mycobacterium bovis/imunologia , Mycobacterium tuberculosis/imunologia , Especificidade da Espécie
7.
Animals (Basel) ; 12(9)2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35565515

RESUMO

Bovine tuberculosis (bTB) is a zoonotic disease caused mainly by Mycobacterium bovis, which is associated with major economic losses for milk and meat producers. The objective of this trial was to assess the efficacy of the BCG Russia strain in a cohort study performed under field conditions, with the vaccination of calves in seven dairy farms from a high prevalence area in central Chile. The trial was performed with 501 animals, subcutaneously vaccinated with 2-8 × 105 colony-forming units of BCG, whilst 441 matched control animals received a saline placebo. Peripheral blood was collected at 6, 12 and 18 months post-vaccination, and infection status was determined using the IFNγ release assay in conjunction with the DIVA (Detecting Infected amongst Vaccinated Animals) antigens ESAT-6, CFP-10 and Rv3615c. The BCG vaccine showed a low but significant level of protection of 22.4% (95% CI 4.0 to 36.4) at the end of the trial. However, diverse levels of protection and a variable duration of immunity were observed between trial herds. This diverse outcome could be influenced by the general health condition of calves and their exposition to non-tuberculous mycobacteria. These results suggest that BCG vaccination of dairy calves in a natural transmission setting confers variable protection to animals against bTB in a high prevalence area.

8.
Front Vet Sci ; 9: 814227, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35498753

RESUMO

The Bacillus Calmette-Guérin (BCG) vaccination provides partial protection against, and reduces severity of pathological lesions associated with bovine tuberculosis (bTB) in cattle. Accumulating evidence also suggests that revaccination with BCG may be needed to enhance the duration of immune protection. Since BCG vaccine cross-reacts with traditional tuberculin-based diagnostic tests, a peptide-based defined antigen skin test (DST) comprising of ESAT-6, CFP-10, and Rv3615c to detect the infected among the BCG-vaccinated animals (DIVA) was recently described. The DST reliably identifies bTB-infected animals in experimental challenge models and in natural infection settings, and differentiated these from animals immunized with a single dose of BCG in both skin tests and interferon-gamma release assay (IGRA). The current investigation sought to assess the diagnostic specificity of DST in calves (Bos taurus ssp. taurus × B. t. ssp. indicus; n = 15) revaccinated with BCG 6 months after primary immunization. The results show that none of the 15 BCG-revaccinated calves exhibited a delayed hypersensitivity response when skin tested with DST 61 days post-revaccination, suggesting 100% diagnostic specificity (one-tailed lower 95% CI: 82). In contrast, 8 of 15 (diagnostic specificity = 47%; 95% CI: 21, 73) BCG-revaccinated calves were positive per the single cervical tuberculin (SCT) test using bovine tuberculin. Together, these results show that the DST retains its specificity even after revaccination with BCG and confirms the potential for implementation of BCG-based interventions in settings where test-and-slaughter are not economically or culturally feasible.

9.
Transbound Emerg Dis ; 69(3): 1419-1425, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-33872473

RESUMO

Bovine tuberculosis (TB) is a chronic disease caused mainly by Mycobacterium bovis, a zoonotic pathogen that has a worldwide distribution causing serious economic losses for milk and meat producers. In Chile, the disease in dairy cattle has a heterogeneous distribution, where the Metropolitan Region concentrates the highest animal prevalence and the main challenge for the national control and eradication programme. In this epidemiological context, vaccination with the M. bovis Bacillus Calmette-Guerin (BCG) vaccine might be a useful strategy for disease prevention and control. The objective of this study was to assess the efficacy and impacts on productivity and fertility of vaccination with the BCG Russia strain in 11 month-old heifers from a dairy farm, under a natural transmission condition. Sixty-two animals were vaccinated via the subcutaneous route with the equivalent of one human dose of BCG, and 60 control animals received saline. Subsequently, blood sampling was performed at 3, 6, 9, 12, 15 and 18 months post-inoculation, and infection status was determined using the IFNγ release assay (IGRA) with the DIVA (differentiate infected from vaccinated animals) antigens ESAT-6, CFP-10 and Rv3615c. Efficacy was calculated as the percentage of reduction in the incidence of infection attributable to vaccination, which showed a statistically significant level of overall protection of 66.5%. No adverse effects on fertility and production were recorded. In contrast, we observed beneficial effects of vaccination on several milk production parameters, with the milk yield in the first 100 days after calving in the BCG group significantly higher compared to unvaccinated heifers (p < .05). These results suggest that BCG vaccination of heifers in a natural transmission setting might result in both sanitary and productive benefits, supporting its implementation as a new strategy for TB prevention in a high prevalence area of Chile.


Assuntos
Doenças dos Bovinos , Mycobacterium bovis , Tuberculose Bovina , Animais , Vacina BCG , Bovinos , Doenças dos Bovinos/tratamento farmacológico , Feminino , Leite , Tuberculose Bovina/prevenção & controle , Vacinação/veterinária
10.
Zoonoses Public Health ; 69(6): 663-672, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-37379451

RESUMO

Bovine tuberculosis (bTB) is a disease with impact on dairy productivity, as well as having the potential for zoonotic transmission. Understanding the genetic diversity of the disease agent Mycobacterium bovis is important for identifying its routes of transmission. Here we investigated the level of genetic diversity of M. bovis isolates and assessed the zoonotic potential in risk groups of people working in bTB-infected dairy farms in central Ethiopia. M. bovis was isolated and spoligotyped from tissue lesions collected from slaughtered cattle as well as from raw milk collected from bTB positive cows in dairy farms from six urban areas of central Ethiopia. From consented dairy farm workers, knowledge and practices related to zoonotic TB transmission, together with demographic and clinical information, was collected through interviews. Sputum or Fine Needle Aspirate (FNA) samples were collected from suspected TB cases. Spoligotyping of 55 M. bovis isolates that originated either from cattle tissues with tuberculous lesion or from raw milk revealed seven spoligotype patterns where SB1176 was the most prevalent type (47.3%). Most isolates (89.1%) were of the M. bovis African 2 clonal complex. All sputum and FNA samples from 41 dairy farm workers with symptoms of TB were culture negative for any mycobacteria. Among the 41 TB suspected farm workers, 61% did not know about bTB in cattle and its zoonotic potential, and over two-third of these workers practiced raw milk consumption. Our spoligotype analysis suggests a wider transmission of a single spoligotype in the study area. The results reported here may be useful in guiding future work to identify the source and direction of bTB transmission and hence design of a control strategy. Isolation of M. bovis from milk, knowledge gap on zoonotic TB and practice of consumption of raw milk in the study population showed potential risk for zoonotic transmission.


Assuntos
Doenças dos Bovinos , Mycobacterium bovis , Tuberculose Bovina , Tuberculose , Feminino , Bovinos , Animais , Mycobacterium bovis/genética , Tuberculose Bovina/epidemiologia , Fazendas , Etiópia/epidemiologia , Tuberculose/epidemiologia , Tuberculose/veterinária
12.
Sci Rep ; 11(1): 7074, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33782422

RESUMO

Bovine tuberculosis (bTB) is a disease of livestock with severe and worldwide economic, animal welfare and zoonotic consequences. Application of test-and-slaughter-based control polices reliant on tuberculin skin testing has been the mainstay of bTB control in cattle. However, little is known about the temporal development of the bovine tuberculin skin test response at the dermal sites of antigen injection. To fill this knowledge gap, we applied minimally-invasive sampling microneedles (SMNs) for intradermal sampling of interstitial fluid at the tuberculin skin test sites in Mycobacterium bovis BCG-vaccinated calves and determined the temporal dynamics of a panel of 15 cytokines and chemokines in situ and in the peripheral blood. The results reveal an orchestrated and coordinated cytokine and local chemokine response, identified IL-1RA as a potential soluble biomarker of a positive tuberculin skin response, and confirmed the utility of IFN-γ and IP-10 for bTB detection in blood-based assays. Together, the results highlight the utility of SMNs to identify novel biomarkers and provide mechanistic insights on the intradermal cytokine and chemokine responses associated with the tuberculin skin test in BCG-sensitized cattle.


Assuntos
Vacina BCG/administração & dosagem , Citocinas/biossíntese , Agulhas , Tuberculina/administração & dosagem , Animais , Bovinos
13.
Front Vet Sci ; 8: 637580, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33681334

RESUMO

More than 50 million cattle are likely exposed to bovine tuberculosis (bTB) worldwide, highlighting an urgent need for bTB control strategies in low- and middle-income countries (LMICs) and other regions where the disease remains endemic and test-and-slaughter approaches are unfeasible. While Bacillus Calmette-Guérin (BCG) was first developed as a vaccine for use in cattle even before its widespread use in humans, its efficacy against bTB remains poorly understood. To address this important knowledge gap, we conducted a systematic review and meta-analysis to determine the direct efficacy of BCG against bTB challenge in cattle, and performed scenario analyses with transmission dynamic models incorporating direct and indirect vaccinal effects ("herd-immunity") to assess potential impact on herd level disease control. The analysis shows a relative risk of infection of 0.75 (95% CI: 0.68, 0.82) in 1,902 vaccinates as compared with 1,667 controls, corresponding to a direct vaccine efficacy of 25% (95% CI: 18, 32). Importantly, scenario analyses considering both direct and indirect effects suggest that disease prevalence could be driven down close to Officially TB-Free (OTF) status (<0.1%), if BCG were introduced in the next 10-year time period in low to moderate (<15%) prevalence settings, and that 50-95% of cumulative cases may be averted over the next 50 years even in high (20-40%) disease burden settings with immediate implementation of BCG vaccination. Taken together, the analyses suggest that BCG vaccination may help accelerate control of bTB in endemic settings, particularly with early implementation in the face of dairy intensification in regions that currently lack effective bTB control programs.

14.
Front Immunol ; 12: 627173, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33777010

RESUMO

Mucosal-associated invariant T (MAIT) cells are a population of innate-like T cells that utilize a semi-invariant T cell receptor (TCR) α chain and are restricted by the highly conserved antigen presenting molecule MR1. MR1 presents microbial riboflavin biosynthesis derived metabolites produced by bacteria and fungi. Consistent with their ability to sense ligands derived from bacterial sources, MAIT cells have been associated with the immune response to a variety of bacterial infections, such as Mycobacterium spp., Salmonella spp. and Escherichia coli. To date, MAIT cells have been studied in humans, non-human primates and mice. However, they have only been putatively identified in cattle by PCR based methods; no phenotypic or functional analyses have been performed. Here, we identified a MAIT cell population in cattle utilizing MR1 tetramers and high-throughput TCR sequencing. Phenotypic analysis of cattle MAIT cells revealed features highly analogous to those of MAIT cells in humans and mice, including expression of an orthologous TRAV1-TRAJ33 TCR α chain, an effector memory phenotype irrespective of tissue localization, and expression of the transcription factors PLZF and EOMES. We determined the frequency of MAIT cells in peripheral blood and multiple tissues, finding that cattle MAIT cells are enriched in mucosal tissues as well as in the mesenteric lymph node. Cattle MAIT cells were responsive to stimulation by 5-OP-RU and riboflavin biosynthesis competent bacteria in vitro. Furthermore, MAIT cells in milk increased in frequency in cows with mastitis. Following challenge with virulent Mycobacterium bovis, a causative agent of bovine tuberculosis and a zoonosis, peripheral blood MAIT cells expressed higher levels of perforin. Thus, MAIT cells are implicated in the immune response to two major bacterial infections in cattle. These data suggest that MAIT cells are functionally highly conserved and that cattle are an excellent large animal model to study the role of MAIT cells in important zoonotic infections.


Assuntos
Infecções Bacterianas/imunologia , Bovinos/imunologia , Células T Invariantes Associadas à Mucosa/imunologia , Animais , Citocinas/farmacologia , Feminino , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Masculino , Camundongos , Antígenos de Histocompatibilidade Menor/imunologia , Fenótipo , Ribitol/análogos & derivados , Ribitol/farmacologia , Uracila/análogos & derivados , Uracila/farmacologia
15.
Lancet Microbe ; 2(6): e267-e275, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34100007

RESUMO

BACKGROUND: Haematopoietic stem cells expressing the CD34 surface marker have been posited as a niche for Mycobacterium tuberculosis complex bacilli during latent tuberculosis infection. Our aim was to determine whether M tuberculosis complex DNA is detectable in CD34-positive peripheral blood mononuclear cells (PBMCs) isolated from asymptomatic adults living in a setting with a high tuberculosis burden. METHODS: We did a cross-sectional study in Ethiopia between Nov 22, 2017, and Jan 10, 2019. Digital PCR (dPCR) was used to determine whether M tuberculosis complex DNA was detectable in PBMCs isolated from 100 mL blood taken from asymptomatic adults with HIV infection or a history of recent household or occupational exposure to an index case of human or bovine tuberculosis. Participants were recruited from HIV clinics, tuberculosis clinics, and cattle farms in and around Addis Ababa. A nested prospective study was done in a subset of HIV-infected individuals to evaluate whether administration of isoniazid preventive therapy was effective in clearing M tuberculosis complex DNA from PBMCs. Follow-up was done between July 20, 2018, and Feb 13, 2019. QuantiFERON-TB Gold assays were also done on all baseline and follow-up samples. FINDINGS: Valid dPCR data (ie, droplet counts >10 000 per well) were available for paired CD34-positive and CD34-negative PBMC fractions from 197 (70%) of 284 participants who contributed data to cross-sectional analyses. M tuberculosis complex DNA was detected in PBMCs of 156 of 197 participants with valid dPCR data (79%, 95% CI 74-85). It was more commonly present in CD34-positive than in CD34-negative fractions (154 [73%] of 197 vs 46 [23%] of 197; p<0·0001). Prevalence of dPCR-detected M tuberculosis complex DNA did not differ between QuantiFERON-negative and QuantiFERON-positive participants (77 [78%] of 99 vs 79 [81%] of 98; p=0·73), but it was higher in HIV-infected than in HIV-uninfected participants (67 [89%] of 75 vs 89 [73%] of 122, p=0·0065). By contrast, the proportion of QuantiFERON-positive participants was lower in HIV-infected than in HIV-uninfected participants (25 [33%] of 75 vs 73 [60%] of 122; p<0·0001). Administration of isoniazid preventive therapy reduced the prevalence of dPCR-detected M tuberculosis complex DNA from 41 (95%) of 43 HIV-infected individuals at baseline to 23 (53%) of 43 after treatment (p<0·0001), but it did not affect the prevalence of QuantiFERON positivity (17 [40%] of 43 at baseline vs 13 [30%] of 43 after treatment; p=0·13). INTERPRETATION: We report a novel molecular microbiological biomarker of latent tuberculosis infection with properties that are distinct from those of a commercial interferon-γ release assay. Our findings implicate the bone marrow as a niche for M tuberculosis in latently infected individuals. Detection of M tuberculosis complex DNA in PBMCs has potential applications in the diagnosis of latent tuberculosis infection, in monitoring response to preventive therapy, and as an outcome measure in clinical trials of interventions to prevent or treat latent tuberculosis infection. FUNDING: UK Medical Research Council.


Assuntos
Infecções por HIV , Tuberculose Latente , Mycobacterium tuberculosis , Tuberculose , Estudos Transversais , DNA , Etiópia/epidemiologia , Infecções por HIV/tratamento farmacológico , Humanos , Isoniazida/farmacologia , Tuberculose Latente/diagnóstico , Leucócitos Mononucleares , Mycobacterium tuberculosis/genética , Estudos Prospectivos , Teste Tuberculínico , Tuberculose/diagnóstico
16.
J Clin Microbiol ; 48(9): 3176-81, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20592155

RESUMO

The tuberculin skin test has been used for the diagnosis of bovine and human tuberculosis (TB) for over a hundred years. However, the specificity of the test is compromised by vaccination with the Mycobacterium bovis-derived vaccine strain bacille Calmette-Guérin (BCG). Since current promising vaccines against bovine TB are based on heterologous prime-boost combinations that include BCG, there is a need for diagnostic tests for differentiating infected from vaccinated animals (DIVA). The application of antigens such as ESAT-6 and CFP-10 for DIVA has so far been realized largely through their application in the blood-based gamma interferon release assay. In the current study, we have reassessed the potential of such antigens as skin test reagents for DIVA in cattle. A cocktail of the Mycobacterium tuberculosis complex recombinant protein antigens ESAT-6, CFP-10, MPB70, and MPB83 elicited delayed-type hypersensitivity (DTH) skin test responses in 78% of naturally infected tuberculin-positive cattle. Importantly, this cocktail induced no skin responses in BCG-vaccinated cattle despite them being sensitized for strong tuberculin responses. Further optimization of skin test antigen combinations identified that the inclusion of Rv3615c (Mb3645c) enhanced skin test sensitivity in naturally infected cattle without compromising specificity. In addition, we demonstrate for the first time the utility of synthetic peptides as promising skin test antigens for bovine TB for DIVA. Our data provide a promising basis for the future development of skin tests for DIVA with practical relevance for TB diagnosis in both veterinary and clinical settings.


Assuntos
Vacina BCG/imunologia , Técnicas Bacteriológicas/métodos , Doenças dos Bovinos/diagnóstico , Mycobacterium bovis/imunologia , Tuberculose Bovina/diagnóstico , Animais , Antígenos de Bactérias , Proteínas de Bactérias , Bovinos , Sensibilidade e Especificidade , Testes Cutâneos
17.
Mediators Inflamm ; 2010: 536478, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20634939

RESUMO

Toll-like receptors (TLRs) are a potent trigger for inflammatory immune responses. Without tight regulation their activation could lead to pathology, so it is imperative to extend our understanding of the regulatory mechanisms that govern TLR expression and function. One family of immunoregulatory proteins which can provide a balancing effect on TLR activity are the Leukocyte Ig-like receptors (LILRs), which act as innate immune receptors for self-proteins. Here we describe the LILR family, their inhibitory effect on TLR activity in cells of the monocytic lineage, their signalling pathway, and their antimicrobial effects during bacterial infection. Agents have already been identified which enhances or inhibits LILR activity raising the future possibility that modulation of LILR function could be used as a means to modulate TLR activity.


Assuntos
Infecções Bacterianas/imunologia , Glicoproteínas de Membrana/imunologia , Receptores Imunológicos/imunologia , Receptores Toll-Like/imunologia , Células Apresentadoras de Antígenos/citologia , Células Apresentadoras de Antígenos/imunologia , Humanos , Transdução de Sinais/imunologia
18.
Trop Anim Health Prod ; 42(3): 375-83, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19757135

RESUMO

Host immune responses to Mycobacterium bovis (M. bovis) infection are variable at the different severity stages of pathology of the disease. In countries like Ethiopia, where routine screening of bovine TB is not undertaken, the use of tests which measure cellular and antibody responses may help for the maximum detection of infection. In the present study, 701 cattle were tested for bovine tuberculosis (BTB) using comparative intradermal tuberculin (CIDT) test, interferon (IFN)-gamma test, and lateral flow assay. The apparent prevalence was 32% when all the three tests were used, but varied from 23 to 25% when a pair of tests was used and from 9% to 15% when a single test was used. Agreement was observed between CIDT and IFN-gamma tests both at a cut-off >2 mm (Kappa +/- standard Error, k +/- SE, 0.129 +/- 0.045; 95%CI = 0.041,0.216) and a cut-off >4 mm (k +/- SE, 0.094 +/- 0.044, 95%CI = 0.008,0.179) while no agreement was observed either between CIDT test and lateral flow assay (k +/- SE, -0.04 +/- 0.033; 95%CI = -0.104,0.024) or between IFN-gamma tests and lateral flow assay (k +/- SE, -0.031 +/- 0.032; 95% CI = -0.093,0.031). Thus, the use of more than one test leads to the detection of the maximum number of infected animals.


Assuntos
Interferon gama/sangue , Mycobacterium bovis , Teste Tuberculínico/veterinária , Tuberculose Bovina/diagnóstico , Animais , Bovinos , Etiópia/epidemiologia , Feminino , Masculino , Tuberculose Bovina/sangue , Tuberculose Bovina/epidemiologia
19.
Front Immunol ; 11: 588180, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33281817

RESUMO

Bovine tuberculosis (bTB), caused by Mycobacterium bovis, is a chronic disease of cattle with a detrimental impact on food quality and production. Research on bTB vaccines has predominantly been focused on proteinaceous antigens. However, mycobacteria have a thick and intricate lipid outer layer and lipids as well as lipopeptides are important for immune-evasion and virulence. In humans, lipid extracts of M. tuberculosis have been shown to elicit immune responses effective against M. tuberculosisin vitro. Chloroform-methanol extraction (CME) was applied to M. bovis BCG to obtain a hydrophobic antigen extract (CMEbcg) containing lipids and lipopeptides. CMEbcg stimulated IFN-γ+IL-2+ and IL-17A+IL-22+ polyfunctional T cells and elicited T cell responses with a Th1 and Th17 cytokine release profile in both M. bovis BCG vaccinated and M. bovis challenged calves. Lipopeptides were shown to be the immunodominant antigens in CMEbcg, stimulating CD4 T cells via MHC class II. CMEbcg expanded T cells killed CMEbcg loaded monocytes and the CMEbcg-specific CD3 T cell proliferative response following M. bovis BCG vaccination was the best predictor for reduced pathology following challenge with M. bovis. Although the high predictive value of CMEbcg-specific immune responses does not confirm a causal relationship with protection against M. bovis challenge, when taking into account the in vitro antimycobacterial phenotype of CMEbcg-specific T cells (e.g. Th1/Th17 cytokine profile), it is indicative that CMEbcg-specific immune responses could play a functional role in immunity against M. bovis. Based on these findings we conclude that lipopeptides of M. bovis are potential novel subunit vaccine candidates and that further studies into the functional characterization of lipopeptide-specific immune responses together with their role in protection against bovine tuberculosis are warranted.


Assuntos
Antígenos de Bactérias/imunologia , Vacina BCG/administração & dosagem , Lipopeptídeos/imunologia , Mycobacterium bovis/imunologia , Linfócitos T/imunologia , Vacinas de Subunidades Antigênicas/administração & dosagem , Animais , Anticorpos Antibacterianos/imunologia , Bovinos/imunologia , Citocinas/imunologia , Interações Hidrofóbicas e Hidrofílicas , Imunização , Masculino
20.
Vaccine ; 38(5): 1241-1248, 2020 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-31759733

RESUMO

In the absence of biomarkers of protective immunity, newly developed vaccines against bovine tuberculosis need to be evaluated in virulent Mycobacterium bovis challenge experiments, which require the use of expensive and highly in demand Biological Safety Level 3 (BSL3) animal facilities. The recently developed bovine BCG challenge model offers a cheaper and faster way to test new vaccine candidates and additionally reduces the severity of the challenge compared to virulent M. bovis challenge in line with the remits of the NC3Rs. In this work we sought to establish the sensitivity of the BCG challenge model by testing a prime boost vaccine regimen that previously increased protection over BCG alone against M. bovis challenge. All animals, except the control group, were vaccinated subcutaneously with BCG Danish, and half of those were then boosted with a recombinant adenoviral vector expressing Antigen 85A, Ad85A. All animals were challenged with BCG Tokyo into the prescapular lymph node and the bacterial load within the lymph nodes was established. All vaccinated animals, independent of the vaccination regimen, cleared BCG significantly faster from the lymph node than control animals, suggesting a protective effect. There was however, no difference between the BCG and the BCG-Ad85A regimens. Additionally, we analysed humoral and cellular immune responses taken prior to challenge for possible predictors of protection. Cultured ELISpot identified significantly higher IFN-É£ responses in protected vaccinated animals, relative to controls, but not in unprotected vaccinated animals. Furthermore, a trend for protected animals to produce more IFN-É£ by quantitative PCR and intracellular staining was observed. Thus, this model can also be an attractive alternative to M. bovis challenge models for the discovery of protective biomarkers.


Assuntos
Vacina BCG/administração & dosagem , Imunização Secundária/veterinária , Tuberculose Bovina , Animais , Carga Bacteriana , Bovinos , Interferon gama/imunologia , Linfonodos/microbiologia , Mycobacterium bovis/imunologia , Tuberculose Bovina/prevenção & controle , Vacinação/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA