Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Basic Res Cardiol ; 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38520533

RESUMO

Immune checkpoint inhibitors (ICIs) exhibit remarkable antitumor activity and immune-related cardiotoxicity of unknown pathomechanism. The aim of the study was to investigate the ICI class-dependent cardiotoxicity in vitro and pembrolizumab's (Pem's) cardiotoxicity in vivo, seeking for translational prevention means. Cytotoxicity was investigated in primary cardiomyocytes and splenocytes, incubated with ipilimumab, Pem and avelumab. Pem's cross-reactivity was assessed by circular dichroism (CD) on biotechnologically produced human and murine PD-1 and in silico. C57BL6/J male mice received IgG4 or Pem for 2 and 5 weeks. Echocardiography, histology, and molecular analyses were performed. Coronary blood flow velocity mapping and cardiac magnetic resonance imaging were conducted at 2 weeks. Human EA.hy926 endothelial cells were incubated with Pem-conditioned media from human mononuclear cells, in presence and absence of statins and viability and molecular signaling were assessed. Atorvastatin (20 mg/kg, daily) was administered in vivo, as prophylaxis. Only Pem exerted immune-related cytotoxicity in vitro. Pem's cross-reactivity with the murine PD-1 was confirmed by CD and docking. In vivo, Pem initiated coronary endothelial and diastolic dysfunction at 2 weeks and systolic dysfunction at 5 weeks. At 2 weeks, Pem induced ICAM-1 and iNOS expression and intracardiac leukocyte infiltration. At 5 weeks, Pem exacerbated endothelial activation and triggered cardiac inflammation. Pem led to immune-related cytotoxicity in EA.hy926 cells, which was prevented by atorvastatin. Atorvastatin mitigated functional deficits, by inhibiting endothelial dysfunction in vivo. We established for the first time an in vivo model of Pem-induced cardiotoxicity. Coronary endothelial dysfunction precedes Pem-induced cardiotoxicity, whereas atorvastatin emerges as a novel prophylactic therapy.

2.
Extremophiles ; 24(2): 293-306, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31980943

RESUMO

Consensus-based protein engineering strategy has been applied to various proteins and it can lead to the design of proteins with enhanced biological performance. Histone-like HUs comprise a protein family with sequence variety within a highly conserved 3D-fold. HU function includes compacting and regulating bacterial DNA in a wide range of biological conditions in bacteria. To explore the possible impact of consensus-based design in the thermodynamic stability of HU proteins, the approach was applied using a dataset of sequences derived from a group of 40 mesostable, thermostable, and hyperthermostable HUs. The consensus-derived HU protein was named HUBest, since it is expected to perform best. The synthetic HU gene was overexpressed in E. coli and the recombinant protein was purified. Subsequently, HUBest was characterized concerning its correct folding and thermodynamic stability, as well as its ability to interact with plasmid DNA. A substantial increase in HUBest stability at high temperatures is observed. HUBest has significantly improved biological performance at ambience temperature, presenting very low Kd values for binding plasmid DNA as indicated from the Gibbs energy profile of HUBest. This Kd may be associated to conformational changes leading to decreased thermodynamic stability and, therefore, higher flexibility at ambient temperature.


Assuntos
Engenharia de Proteínas , Sequência de Aminoácidos , Proteínas de Bactérias , Consenso , DNA Bacteriano , Escherichia coli , Histonas , Ligação Proteica , Estabilidade Proteica
3.
Int J Mol Sci ; 21(8)2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32326166

RESUMO

Analyzing the structure of proteins from extremophiles is a promising way to study the rules governing the protein structure, because such proteins are results of structural and functional optimization under well-defined conditions. Studying the structure of chitinases addresses an interesting aspect of enzymology, because chitin, while being the world's second most abundant biopolymer, is also a recalcitrant substrate. The crystal structure of a thermostable chitinase from Streptomyces thermoviolaceus (StChi40) has been solved revealing a ß/α-barrel (TIM-barrel) fold with an α+ß insertion domain. This is the first chitinase structure of the multi-chitinase system of S. thermoviolaceus. The protein is also known to refold efficiently after thermal or chemical denaturation. StChi40 is structurally close to the catalytic domain of psychrophilic chitinase B from Arthrobacter TAD20. Differences are noted in comparison to the previously examined chitinases, particularly in the substrate-binding cleft. A comparison of the thermophilic enzyme with its psychrophilic homologue revealed structural features that could be attributed to StChi40's thermal stability: compactness of the structure with trimmed surface loops and unique disulfide bridges, one of which is additionally stabilized by S-π interactions with aromatic rings. Uncharacteristically for thermophilic proteins, StChi40 has fewer salt bridges than its mesophilic and psychrophilic homologues.


Assuntos
Quitinases/química , Modelos Moleculares , Conformação Proteica , Redobramento de Proteína , Streptomyces/enzimologia , Substituição de Aminoácidos , Sítios de Ligação , Catálise , Domínio Catalítico , Quitinases/genética , Cristalografia por Raios X , Dissulfetos , Dobramento de Proteína , Streptomyces/genética , Relação Estrutura-Atividade
4.
Molecules ; 25(16)2020 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-32824311

RESUMO

Cystathionine ß-synthase (CBS) is a key enzyme in the production of the signaling molecule hydrogen sulfide, deregulation of which is known to contribute to a range of serious pathological states. Involvement of hydrogen sulfide in pathways of paramount importance for cellular homeostasis renders CBS a promising drug target. An in-house focused library of heteroaromatic compounds was screened for CBS modulators by the methylene blue assay and a pyrazolopyridine derivative with a promising CBS inhibitory potential was discovered. The compound activity was readily comparable to the most potent CBS inhibitor currently known, aminoacetic acid, while a promising specificity over the related cystathionine γ-lyase was identified. To rule out any possibility that the inhibitor may bind the enzyme regulatory domain due to its high structural similarity with cofactor s-adenosylmethionine, differential scanning fluorimetry was employed. A sub-scaffold search guided follow-up screening of related compounds, providing preliminary structure-activity relationships with respect to requisites for efficient CBS inhibition by this group of heterocycles. Subsequently, a hypothesis regarding the exact binding mode of the inhibitor was devised on the basis of the available structure-activity relationships (SAR) and a deep neural networks analysis and further supported by induced-fit docking calculations.


Assuntos
Cistationina beta-Sintase/antagonistas & inibidores , Cistationina beta-Sintase/metabolismo , Inibidores Enzimáticos/farmacologia , Sulfeto de Hidrogênio/análise , Pirazóis/farmacologia , Piridinas/farmacologia , Inibidores Enzimáticos/química , Humanos , Modelos Moleculares , Estrutura Molecular , Redes Neurais de Computação , Pirazóis/química , Piridinas/química , S-Adenosilmetionina/química , Relação Estrutura-Atividade
5.
Int J Mol Sci ; 18(9)2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28914798

RESUMO

γH2AX has emerged in the last 20 years as a central player in the DDR (DNA damage response), with specificity for DSBs (double-strand breaks). Upon the generation of DSBs, γ-phosphorylation extends along megabase-long domains in chromatin, both sides of the damage. The significance of this mechanism is of great importance; it depicts a biological amplification mechanism where one DSB induces the γ-phosphorylation of thousands of H2AX molecules along megabaselong domains of chromatin, that are adjusted to the sites of DSBs. A sequential recruitment of signal transduction factors that interact to each other and become activated to further amplify the signal that will travel to the cytoplasm take place on the γ-phosphorylated chromatin. γ-phosphorylation is an early event in the DSB damage response, induced in all phases of the cell cycle, and participates in both DSB repair pathways, the HR (homologous recombination) and NHEJ (non-homologous end joining). Today, numerous studies support the notion that γH2AX functions as a guardian of the genome by preventing misrepaired DSB that increase the mutation load of the cells and may further lead to genome instability and carcinogenesis.


Assuntos
Instabilidade Genômica , Histonas/metabolismo , Animais , Quebras de DNA de Cadeia Dupla , Dano ao DNA , Reparo do DNA , Suscetibilidade a Doenças , Epigênese Genética , Histonas/genética , Humanos , Mutação , Transdução de Sinais
6.
Extremophiles ; 20(5): 695-709, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27342116

RESUMO

The histone-like DNA-binding proteins (HU) serve as model molecules for protein thermostability studies, as they function in different bacteria that grow in a wide range of temperatures and show sequence diversity under a common fold. In this work, we report the cloning of the hutth gene from Thermus thermophilus, the purification and crystallization of the recombinant HUTth protein, as well as its X-ray structure determination at 1.7 Å. Detailed structural and thermodynamic analyses were performed towards the understanding of the thermostability mechanism. The interaction of HUTth protein with plasmid DNA in solution has been determined for the first time with MST. Sequence conservation of an exclusively thermophilic order like Thermales, when compared to a predominantly mesophilic order (Deinococcales), should be subject, to some extent, to thermostability-related evolutionary pressure. This hypothesis was used to guide our bioinformatics and evolutionary studies. We discuss the impact of thermostability adaptation on the structure of HU proteins, based on the detailed evolutionary analysis of the Deinococcus-Thermus phylum, where HUTth belongs. Furthermore, we propose a novel method of engineering thermostable proteins, by combining consensus-based design with ancestral sequence reconstruction. Finally, through the structure of HUTth, we are able to examine the validity of these predictions. Our approach represents a significant advancement, as it explores for the first time the potential of ancestral sequence reconstruction in the divergence between a thermophilic and a mainly mesophilic taxon, combined with consensus-based engineering.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Evolução Molecular , Temperatura Alta , Thermus thermophilus/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sequência Conservada , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Ligação Proteica , Estabilidade Proteica , Thermus thermophilus/metabolismo
8.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 3): 676-84, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24598737

RESUMO

The four-domain structure of chitinase 60 from Moritella marina (MmChi60) is outstanding in its complexity. Many glycoside hydrolases, such as chitinases and cellulases, have multi-domain structures, but only a few have been solved. The flexibility of the hinge regions between the domains apparently makes these proteins difficult to crystallize. The analysis of an active-site mutant of MmChi60 in an unliganded form and in complex with the substrates NAG4 and NAG5 revealed significant differences in the substrate-binding site compared with the previously determined complexes of most studied chitinases. A SAXS experiment demonstrated that in addition to the elongated state found in the crystal, the protein can adapt other conformations in solution ranging from fully extended to compact.


Assuntos
Quitinases/química , Quitinases/metabolismo , Moritella/enzimologia , Quitinases/genética , Cristalografia por Raios X , Ligantes , Moritella/genética , Oligossacarídeos/química , Oligossacarídeos/metabolismo , Mutação Puntual , Conformação Proteica , Multimerização Proteica , Espalhamento a Baixo Ângulo , Soluções , Especificidade por Substrato , Difração de Raios X
9.
Biology (Basel) ; 13(5)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38785833

RESUMO

Microarray experiments, a mainstay in gene expression analysis for nearly two decades, pose challenges due to their complexity. To address this, we introduce DExplore, a user-friendly web application enabling researchers to detect differentially expressed genes using data from NCBI's GEO. Developed with R, Shiny, and Bioconductor, DExplore integrates WebGestalt for functional enrichment analysis. It also provides visualization plots for enhanced result interpretation. With a Docker image for local execution, DExplore accommodates unpublished data. To illustrate its utility, we showcase two case studies on cancer cells treated with chemotherapeutic drugs. DExplore streamlines microarray data analysis, empowering molecular biologists to focus on genes of biological significance.

10.
Foods ; 13(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38611328

RESUMO

Sfela is a white brined Greek cheese of protected designation of origin (PDO) produced in the Peloponnese region from ovine, caprine milk, or a mixture of the two. Despite the PDO status of Sfela, very few studies have addressed its properties, including its microbiology. For this reason, we decided to investigate the microbiome of two PDO industrial Sfela cheese samples along with two non-PDO variants, namely Sfela touloumotiri and Xerosfeli. Matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS), 16S rDNA amplicon sequencing and shotgun metagenomics analysis were used to identify the microbiome of these traditional cheeses. Cultured-based analysis showed that the most frequent species that could be isolated from Sfela cheese were Enterococcus faecium, Lactiplantibacillus plantarum, Levilactobacillus brevis, Pediococcus pentosaceus and Streptococcus thermophilus. Shotgun analysis suggested that in industrial Sfela 1, Str. thermophilus dominated, while industrial Sfela 2 contained high levels of Lactococcus lactis. The two artisanal samples, Sfela touloumotiri and Xerosfeli, were dominated by Tetragenococcus halophilus and Str. thermophilus, respectively. Debaryomyces hansenii was the only yeast species with abundance > 1% present exclusively in the Sfela touloumotiri sample. Identifying additional yeast species in the shotgun data was challenging, possibly due to their low abundance. Sfela cheese appears to contain a rather complex microbial ecosystem and thus needs to be further studied and understood. This might be crucial for improving and standardizing both its production and safety measures.

11.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 5): 821-9, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23633591

RESUMO

X-ray crystallography reveals chitinase from the psychrophilic bacterium Moritella marina to be an elongated molecule which in addition to the catalytic ß/α-barrel domain contains two Ig-like domains and a chitin-binding domain, all linked in a chain. A ligand-binding study using NAG oligomers showed the enzyme to be active in the crystal lattice and resulted in complexes of the protein with oxazolinium ion (the reaction intermediate) and with NAG2, a reaction product. The characteristic motif DXDXE, containing three acidic amino-acid residues, which is a signature of type 18 chitinases, is conserved in the enzyme. Further analysis of the unliganded enzyme with the two protein-ligand complexes and a comparison with other known chitinases elucidated the roles of other conserved residues near the active site. Several features have been identified that are probably important for the reaction mechanism, substrate binding and the efficiency of the enzyme at low temperatures. The chitin-binding domain and the tryptophan patch on the catalytic domain provide general affinity for chitin, in addition to the affinity of the binding site; the two Ig-like domains give the protein a long reach over the chitin surface, and the flexible region between the chitin-binding domain and the adjacent Ig-like domain suggests an ability of the enzyme to probe the surface of the substrate, while the open shallow substrate-binding groove allows easy access to the active site.


Assuntos
Quitinases/química , Moritella/enzimologia , Motivos de Aminoácidos , Organismos Aquáticos , Sítios de Ligação , Domínio Catalítico , Quitinases/metabolismo , Cristalografia por Raios X , Ligantes , Modelos Moleculares , Moritella/química , Oligossacarídeos/química , Oligossacarídeos/metabolismo , Conformação Proteica , Estrutura Terciária de Proteína , Trissacarídeos/química , Trissacarídeos/metabolismo , Triptofano/química
12.
Front Genet ; 14: 1266353, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38090149

RESUMO

Introduction: Galactosemia is an inherited disorder caused by mutations in the three genes that encode enzymes implicated in galactose catabolism. Currently, the only available treatment for galactosemia is life-long dietary restriction of galactose/lactose, and despite treatment, it might result in long-term complications. Methods: Here, we present five cases of newborn patients with elevated galactose levels, identified in the context of the newborn screening program. Genetic analysis concerned a next generation sequencing (NGS) methodology covering the exons and adjacent splice regions of the GALT, GALK1, and GALE genes. Results: Our approach led to the identification of eight rare nonsynonymous DNA variants. Four of these variants, namely, p.Arg204Gln and p.Met298Ile in GALT, p.Arg68Leu in GALK1, and p.Ala180Thr in GALE, were already recorded in relevant databases, yet their clinical significance is uncertain. The other four variants, namely, p.Phe245Leu in GALT, p.Gly193Glu in GALK1, and p.Ile266Leu and p.Ala216Thr in the GALE gene, were novel. In silico analysis of the possible effect of these variants in terms of protein function and stability was performed using a series of bioinformatics tools, followed by visualization of the substituted amino acids within the protein molecule. The analysis revealed a deleterious and/or destabilizing effect for all the variants, supported by multiple tools in each case. Discussion: These results, given the extreme rarity of the variants and the specific phenotype of the respective cases, support a pathogenic effect for each individual variant. Altogether, our study shows that targeted NGS methodologies may offer a time- and cost-effective approach for the genetic investigation of galactosemia and can assist in elucidating the complex genetic background of this disorder.

13.
Sci Adv ; 8(44): eabm9651, 2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36332026

RESUMO

Anaerobic methane metabolism is among the hallmarks of Archaea, originating very early in their evolution. Here, we show that the ancestor of methane metabolizers was an autotrophic CO2-reducing hydrogenotrophic methanogen that possessed the two main complexes, methyl-CoM reductase (Mcr) and tetrahydromethanopterin-CoM methyltransferase (Mtr), the anaplerotic hydrogenases Eha and Ehb, and a set of other genes collectively called "methanogenesis markers" but could not oxidize alkanes. Overturning recent inferences, we demonstrate that methyl-dependent hydrogenotrophic methanogenesis has emerged multiple times independently, either due to a loss of Mtr while Mcr is inherited vertically or from an ancient lateral acquisition of Mcr. Even if Mcr is lost, Mtr, Eha, Ehb, and the markers can persist, resulting in mixotrophic metabolisms centered around the Wood-Ljungdahl pathway. Through their methanogenesis remnants, Thorarchaeia and two newly reconstructed order-level lineages in Archaeoglobi and Bathyarchaeia act as metabolically versatile players in carbon cycling of anoxic environments across the globe.

14.
Biophys J ; 100(3): 784-790, 2011 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-21281594

RESUMO

HU is a highly conserved protein that is believed to play an important role in the architecture and dynamic compaction of bacterial DNA. Its ability to control DNA bending is crucial for functions such as transcription and replication. The effects of HU on the DNA structure have been studied so far mainly by single molecule methods that require us to apply stretching forces on the DNA and therefore may perturb the DNA-protein interaction. To overcome this hurdle, we study the effect of HU on the DNA structure without applying external forces by using an improved tethered particle motion method. By combining the results with DNA curvature analysis from atomic force microscopy measurements we find that the DNA consists of two different curvature distributions and the measured persistence length is determined by their interplay. As a result, the effective persistence length adopts a bimodal property that depends primarily on the HU concentration. The results can be explained according to a recently suggested model that distinguishes single protein binding from cooperative protein binding.


Assuntos
Proteínas de Bactérias/metabolismo , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/metabolismo , Geobacillus stearothermophilus/metabolismo , Proteínas de Bactérias/ultraestrutura , Proteínas de Ligação a DNA/ultraestrutura , Microscopia de Força Atômica , Microesferas
15.
J Struct Biol ; 173(2): 294-302, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21095228

RESUMO

The nitrilase superfamily is a large and diverse superfamily of enzymes that catalyse the cleavage of various types of carbon-nitrogen bonds using a Cys-Glu-Lys catalytic triad. Thermoactive nitrilase from Pyrococcus abyssi (PaNit) hydrolyses small aliphatic nitriles like fumaro- and malononitryl. Yet, the biological role of this enzyme is unknown. We have analysed several crystal structures of PaNit: without ligands, with an acetate ion bound in the active site and with a bromide ion in the active site. In addition, docking calculations have been performed for fumaro- and malononitriles. The structures provide a proof for specific binding of the carboxylate ion and a general affinity for negatively changed ligands. The role of residues in the active site is considered and an enzymatic reaction mechanism is proposed in which Cys146 acts as the nucleophile, Glu42 as the general base, Lys113/Glu42 as the general acid, WatA as the hydrolytic water and Nζ_Lys113 and N_Phe147 form the oxyanion hole.


Assuntos
Aminoidrolases/química , Pyrococcus abyssi/enzimologia , Aminoidrolases/metabolismo , Cristalografia por Raios X , Ligação de Hidrogênio , Modelos Moleculares , Ligação Proteica , Estrutura Secundária de Proteína
16.
Appl Environ Microbiol ; 77(10): 3526-31, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21421783

RESUMO

gsiB, coding for glucose starvation-inducible protein B, is a characteristic member of the σ(Β) stress regulon of Bacillus subtilis and several other Gram-positive bacteria. Here we provide in silico evidence for the horizontal transfer of gsiB in lactic acid bacteria that are devoid of the σ(Β) factor.


Assuntos
Proteínas de Bactérias/genética , Transferência Genética Horizontal , Bactérias Gram-Positivas/genética , Proteínas de Bactérias/metabolismo , Biologia Computacional/métodos , Regulação Bacteriana da Expressão Gênica , Fator sigma/metabolismo
17.
Anticancer Res ; 41(6): 2953-2962, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34083286

RESUMO

BACKGROUND/AIM: Numerous missense mutations have been determined in the BRCT domain of the BRCA1 gene, affecting localization and interaction of BRCA1 with other proteins. MATERIALS AND METHODS: We examined whether the M1775K and V1809F mutations in the BRCT domain affect BRCA1 cellular localization. Cells were transfected with pEGFP-C3-BRCA1 and detected by fluorescence microscopy. RESULTS: Following induction of DNA damage, cytoplasmic mislocalization was observed for both M1775K and V1809F mutants compared to EGFP-BRCA1wt and the less common variant M1652I. These results indicate that M1775K and V1809F mutations may change the function of the protein by affecting BRCA1 localization. CONCLUSION: There is a correlation between subcellular localization of BRCA1 and diminished DNA repair observed in breast cancer cells, which may be explained by structural variations and altered binding properties of phosphopeptides.


Assuntos
Proteína BRCA1/metabolismo , Genes BRCA1 , Mutação de Sentido Incorreto , Frações Subcelulares/metabolismo , Proteína BRCA1/química , Dano ao DNA , Reparo do DNA , Proteínas de Fluorescência Verde/genética , Humanos , Células MCF-7 , Microscopia de Fluorescência , Domínios Proteicos
18.
Biochim Biophys Acta ; 1794(1): 23-31, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18973833

RESUMO

Chitinase A (ChiA) from Serratia marcescens is a mesophilic enzyme with high catalytic activity and high stability. The crystal structure of ChiA has revealed a TIM-barrel fold of the catalytic domain, an (alpha+beta) insertion between the B7 beta-strand and A7 alpha-helix of the TIM-barrel, an FnIII domain at the N-terminus of the molecule and a hinge region that connects the latter to the catalytic domain. In this study, the role of the (alpha+beta) domain on the stability, catalytic activity and specificity of the enzyme was investigated by deleting this domain and studying the enzymatic and structural properties of the resulting truncated enzyme. The obtained data clearly show that by removing the (alpha+beta) domain, the thermal stability of the enzyme is substantially reduced, with an apparent T(m) of 42.0+/-1.0 degrees C, compared to the apparent T(m) of 58.1+/-1.0 degrees C of ChiA at pH 9.0. The specific activity of ChiADelta(alpha+beta) was substantially decreased, the pH optimum was shifted from 6.5 to 5.0 and the substrate and product specificities were altered.


Assuntos
Domínio Catalítico , Quitinases/química , Quitinases/metabolismo , Serratia marcescens/enzimologia , Sequência de Aminoácidos , Cromatografia Líquida de Alta Pressão , Cristalografia por Raios X , Eletroforese em Gel de Poliacrilamida , Ativação Enzimática , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Dobramento de Proteína , Estrutura Secundária de Proteína , Homologia de Sequência de Aminoácidos , Análise Espectral , Temperatura
19.
Microbiol Resour Announc ; 9(4)2020 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-31974151

RESUMO

Here, the complete assembly of the Moritella marina MP-1 (ATCC 15381) genome, combining Illumina and long Nanopore reads, is presented. The gapless assembly consists of a 4.7-Mb circular chromosome and a 26-kb plasmid, with a G+C content of 40.7%, and will assist in further studies of the molecular pathways in this biotechnologically significant organism.

20.
Redox Biol ; 28: 101317, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31505326

RESUMO

18α-Glycyrrhetinic acid (18α-GA) is a bioactive triterpenoid that has been shown to activate the nuclear factor (erythroid-derived-2)-like 2 (Nrf2), the main transcription factor that orchestrates the cellular antioxidant response, in both cellular and organismal context. Although various beneficial properties of 18α-GA have been revealed, including its anti-oxidation and anti-aging activity, its possible protective effect against DNA damage has never been addressed. In this study, we investigated the potential beneficial properties of 18α-GA against DNA damage induced by mitomycin C (MMC) treatment. Using human primary fibroblasts exposed to MMC following pre-treatment with 18α-GA, we reveal an Nrf2-mediated protective effect against MMC-induced cell death that depends on extracellular signal-regulated kinase (ERK) signaling. In total, our results reveal an additional beneficial effect of the Nrf2 activator 18α-GA, suggesting that this important phytochemical compound is a potential candidate in preventive and/or therapeutic schemes against conditions (such as aging) or diseases that are characterized by both oxidative stress and DNA damage.


Assuntos
Fibroblastos/citologia , Ácido Glicirretínico/análogos & derivados , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Mitomicina/efeitos adversos , Fator 2 Relacionado a NF-E2/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular , Dano ao DNA , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Ácido Glicirretínico/farmacologia , Humanos , Fator 2 Relacionado a NF-E2/genética , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA