RESUMO
The type 2 secretion system (T2SS) is a bacterial nanomachine composed of an inner membrane assembly platform, an outer membrane pore and a dynamic endopilus. T2SS endopili are organized into a homo-multimeric body formed by the major pilin capped by a heterocomplex of four minor pilins. The first model of the T2SS endopilus was recently released, even if structural dynamics insights are still required to decipher the role of each protein in the full tetrameric complex. Here, we applied continuous-wave and pulse EPR spectroscopy using nitroxide-gadolinium orthogonal labelling strategies to investigate the hetero-oligomeric assembly of the minor pilins. Overall, our data are in line with the endopilus model even if they evidenced conformational flexibility and alternative orientations at local scale of specific regions of minor pilins. The integration of different labelling strategies and EPR experiments demonstrates the pertinence of this approach to investigate protein-protein interactions in such multiprotein heterocomplexes.
Assuntos
Sistemas de Secreção Tipo II , Proteínas de Fímbrias/química , Proteínas de Fímbrias/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Proteínas , Marcadores de SpinRESUMO
To overcome the metal restriction imposed by the host's nutritional immunity, pathogenic bacteria use high metal affinity molecules called metallophores. Metallophore-mediated metal uptake pathways necessitate complex cycles of synthesis, secretion, and recovery of the metallophore across the bacterial envelope. We recently discovered staphylopine and pseudopaline, two members of a new family of broad-spectrum metallophores important for bacterial survival during infections. Here, we are expending the molecular understanding of the pseudopaline transport cycle across the diderm envelope of the Gram-negative bacterium Pseudomonas aeruginosa. We first explored pseudopaline secretion by performing in vivo quantifications in various genetic backgrounds and revealed the specific involvement of the MexAB-OprM efflux pump in pseudopaline transport across the outer membrane. We then addressed the recovery part of the cycle by investigating the fate of the recaptured metal-loaded pseudopaline. To do so, we combined in vitro reconstitution experiments and in vivo phenotyping in absence of pseudopaline transporters to reveal the existence of a pseudopaline modification mechanism, possibly involved in the metal release following pseudopaline recovery. Overall, our data allowed us to provide an improved molecular model of secretion, recovery, and fate of this important metallophore by P. aeruginosa.
Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Pseudomonas aeruginosa/metabolismo , Bactérias/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Bactérias/metabolismo , Secreções Corporais/metabolismo , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Proteínas de Membrana Transportadoras/genética , Testes de Sensibilidade Microbiana , Oligopeptídeos/metabolismoRESUMO
In many Gram-negative bacteria, the type 2 secretion system (T2SS) plays an important role in virulence because of its capacity to deliver a large amount of fully folded protein effectors to the extracellular milieu. Despite our knowledge of most T2SS components, the mechanisms underlying effector recruitment and secretion by the T2SS remain enigmatic. Using complementary biophysical and biochemical approaches, we identified here two direct interactions between the secreted effector CbpD and two components, XcpYL and XcpZM, of the T2SS assembly platform (AP) in the opportunistic pathogen Pseudomonas aeruginosa Competition experiments indicated that CbpD binding to XcpYL is XcpZM-dependent, suggesting sequential recruitment of the effector by the periplasmic domains of these AP components. Using a bacterial two-hybrid system, we then tested the influence of the effector on the AP protein-protein interaction network. Our findings revealed that the presence of the effector modifies the AP interactome and, in particular, induces XcpZM homodimerization and increases the affinity between XcpYL and XcpZM The observed direct relationship between effector binding and T2SS dynamics suggests an additional synchronizing step during the type 2 secretion process, where the activation of the AP of the T2SS nanomachine is triggered by effector binding.
Assuntos
Proteínas de Bactérias/metabolismo , Sistemas de Secreção Tipo II/metabolismo , Proteínas de Bactérias/química , Periplasma/metabolismo , Ligação Proteica , Domínios Proteicos , Multimerização Proteica , Estrutura Quaternária de Proteína , Pseudomonas aeruginosa/citologia , Pseudomonas aeruginosa/metabolismo , Sistemas de Secreção Tipo II/químicaRESUMO
Enzymatic regulations are central processes for the adaptation to changing environments. In the particular case of metallophore-dependent metal uptake, there is a need to quickly adjust the production of these metallophores to the metal level outside the cell, to avoid metal shortage or overload, as well as waste of metallophores. In Staphylococcus aureus, CntM catalyzes the last biosynthetic step in the production of staphylopine, a broad-spectrum metallophore, through the reductive condensation of a pathway intermediate (xNA) with pyruvate. Here, we describe the chemical synthesis of this intermediate, which was instrumental in the structural and functional characterization of CntM and confirmed its opine synthase properties. The three-dimensional structure of CntM was obtained in an "open" form, in the apo state or as a complex with substrate or product. The xNA substrate appears mainly stabilized by its imidazole ring through a π-π interaction with the side chain of Tyr240. Intriguingly, we found that metals exerted various and sometime antagonistic effects on the reaction catalyzed by CntM: zinc and copper are moderate activators at low concentration and then total inhibitors at higher concentration, whereas manganese is only an activator and cobalt and nickel are only inhibitors. We propose a model in which the relative affinity of a metal toward xNA and an inhibitory binding site on the enzyme controls activation, inhibition, or both as a function of metal concentration. This metal-dependent regulation of a metallophore-producing enzyme might also take place in vivo, which could contribute to the adjustment of metallophore production to the internal metal level.
Assuntos
Imidazóis/metabolismo , Metais Pesados/metabolismo , Oxirredutases/metabolismo , Metais Pesados/química , Modelos Moleculares , Conformação Molecular , Staphylococcus aureus/enzimologiaRESUMO
Bacterial secretins are outer membrane proteins that provide a path for secreted proteins to access the cell exterior/surface. They are one of the core components of secretion machines and are found in type II and type III secretion systems (T2SS and T3SS, respectively). The secretins comprise giant ring-shaped homo-oligomers whose precise atomic organization was only recently deciphered thanks to spectacular developments in cryo-electron microscopy (cryo-EM) imaging techniques.
Assuntos
Proteínas da Membrana Bacteriana Externa/química , Sistemas de Secreção Bacterianos/química , Secretina/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas da Membrana Bacteriana Externa/ultraestrutura , Sistemas de Secreção Bacterianos/metabolismo , Sistemas de Secreção Bacterianos/ultraestrutura , Microscopia Crioeletrônica/métodos , Klebsiella/química , Modelos Moleculares , Secretina/metabolismo , Sistemas de Secreção Tipo II/química , Sistemas de Secreção Tipo II/ultraestrutura , Vibrio/químicaRESUMO
Infection of the vascular system by Pseudomonas aeruginosa (Pa) occurs during bacterial dissemination in the body or in blood-borne infections. Type 3 secretion system (T3SS) toxins from Pa induce a massive retraction when injected into endothelial cells. Here, we addressed the role of type 2 secretion system (T2SS) effectors in this process. Mutants with an inactive T2SS were much less effective than wild-type strains at inducing cell retraction. Furthermore, secretomes from wild-types were sufficient to trigger cell-cell junction opening when applied to cells, while T2SS-inactivated mutants had minimal activity. Intoxication was associated with decreased levels of vascular endothelial (VE)-cadherin, a homophilic adhesive protein located at endothelial cell-cell junctions. During the process, the protein was cleaved in the middle of its extracellular domain (positions 335 and 349). VE-cadherin attrition was T3SS-independent but T2SS-dependent. Interestingly, the epithelial (E)-cadherin was unaffected by T2SS effectors, indicating that this mechanism is specific to endothelial cells. We showed that one of the T2SS effectors, the protease LasB, directly affected VE-cadherin proteolysis, hence promoting cell-cell junction disruption. Furthermore, mouse infection with Pa to induce acute pneumonia lead to significant decreases in lung VE-cadherin levels, whereas the decrease was minimal with T2SS-inactivated or LasB-deleted mutant strains. We conclude that the T2SS plays a pivotal role during Pa infection of the vascular system by breaching the endothelial barrier, and propose a model in which the T2SS and the T3SS cooperate to intoxicate endothelial cells.
Assuntos
Antígenos CD/metabolismo , Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos/fisiologia , Caderinas/metabolismo , Metaloendopeptidases/metabolismo , Infecções por Pseudomonas/metabolismo , Animais , Western Blotting , Células Cultivadas , Modelos Animais de Doenças , Endotélio Vascular/metabolismo , Imunofluorescência , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB CRESUMO
Bacterial infectious diseases are the result of multifactorial processes affected by the interplay between virulence factors and host targets. The host-Pseudomonas and Coxiella interaction database (HoPaCI-DB) is a publicly available manually curated integrative database (http://mips.helmholtz-muenchen.de/HoPaCI/) of host-pathogen interaction data from Pseudomonas aeruginosa and Coxiella burnetii. The resource provides structured information on 3585 experimentally validated interactions between molecules, bioprocesses and cellular structures extracted from the scientific literature. Systematic annotation and interactive graphical representation of disease networks make HoPaCI-DB a versatile knowledge base for biologists and network biology approaches.
Assuntos
Coxiella burnetii/fisiologia , Bases de Dados Factuais , Interações Hospedeiro-Patógeno , Pseudomonas aeruginosa/fisiologia , Sistemas de Secreção Bacterianos , Humanos , Internet , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/patogenicidade , Febre Q/microbiologiaRESUMO
In metabolomics there is an ever-growing need for faster and more comprehensive analysis methods to cope with the increasing size of biological studies. Direct-infusion ion-cyclotron-resonance Fourier-transform spectrometry (DI-ICR-FT-MS) is used in non-targeted metabolomics to obtain high-resolution snapshots of the metabolic state of a system. We applied this technology to a Caenorhabditis elegans-Pseudomonas aeruginosa infection model and optimized times needed for cultivation and mass-spectrometric analysis. Our results reveal that DI-ICR-FT-MS is a promising tool for high-throughput in-depth non-targeted metabolomics. We performed whole-worm metabolomics and recovered markers of the induced metabolic changes in C. elegans brought about by interaction with pathogens. In this investigation, we reveal complex metabolic phenotypes enabling clustering based upon challenge. Specifically, we observed a marked decrease in amino-acid metabolism with infection by P. aeruginosa and a marked increase in sugar metabolism with infection by Salmonella enterica. We were also able to discriminate between infection with a virulent wild-type Pseudomonas and with an attenuated mutant, making it possible to use this method in larger genetic screens to identify host and pathogen effectors affecting the metabolic phenotype of infection.
Assuntos
Caenorhabditis elegans/metabolismo , Metabolômica/métodos , Infecções por Pseudomonas/metabolismo , Pseudomonas aeruginosa , Aminoácidos/metabolismo , Animais , Caenorhabditis elegans/microbiologia , Modelos Animais de Doenças , Análise de Fourier , Glucose/metabolismo , Ensaios de Triagem em Larga Escala , Interações Hospedeiro-Patógeno , Espectrometria de Massas/métodos , Metabolômica/instrumentação , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/patogenicidade , Infecções por Salmonella/metabolismo , Infecções por Salmonella/microbiologia , Salmonella enterica/patogenicidadeRESUMO
We present here the functional characterization of a third complete type II secretion system (T2SS) found in newly sequenced Pseudomonas aeruginosa strain PA7. We call this system Txc (third Xcp homolog). This system is encoded by the RGP69 region of genome plasticity found uniquely in strain PA7. In addition to the 11 txc genes, RGP69 contains two additional genes encoding a possible T2SS substrate and a predicted unorthodox sensor protein, TtsS (type II secretion sensor). We also identified a gene encoding a two-component response regulator called TtsR (type II secretion regulator), which is located upstream of the ttsS gene and just outside RGP69. We show that TtsS and TtsR constitute a new and functional two-component system that controls the production and secretion of the RGP69-encoded T2SS substrate in a Txc-dependent manner. Finally, we demonstrate that this Txc-secreted substrate binds chitin, and we therefore name it CbpE (chitin-binding protein E).
Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Quitina/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Ligação Proteica/fisiologia , Pseudomonas aeruginosa/metabolismo , Proteínas de Bactérias/genética , Sequência de Bases , Proteínas de Transporte/genética , Clonagem Molecular , Escherichia coli/metabolismo , Dados de Sequência Molecular , Pseudomonas aeruginosa/classificação , Pseudomonas aeruginosa/genética , Proteínas Recombinantes , Saccharomyces cerevisiae/metabolismoRESUMO
To exchange and communicate with their surroundings, bacteria have evolved multiple active and passive mechanisms for trans-envelope transport. Among the pore-forming complexes found in the outer membrane of Gram-negative bacteria, secretins are distinctive homo-oligomeric channels dedicated to the active translocation of voluminous structures such as folded proteins, assembled fibers, virus particles or DNA. Members of the bacterial secretin family share a common cylinder-shaped structure with a gated pore-forming part inserted in the outer membrane, and a periplasmic channel connected to the inner membrane components of the corresponding nanomachine. In this mini-review, we will present what recently determined 3D structures have told us about the mechanisms of translocation through secretins of large substrates to the bacterial surface or in the extracellular milieu.
Assuntos
Bactérias Gram-Negativas , Secretina , Secretina/química , Secretina/genética , Secretina/metabolismo , Ligação Proteica , Transporte Proteico , Bactérias Gram-Negativas/metabolismo , Proteínas da Membrana Bacteriana Externa/química , Proteínas de Bactérias/químicaRESUMO
Secretins are outer membrane (OM) channels found in various bacterial nanomachines that secrete or assemble large extracellular structures. High-resolution 3D structures of type 2 secretion system (T2SS) secretins revealed bimodular channels with a C-module, holding a conserved central gate and an optional top gate, followed by an N-module for which multiple structural organizations have been proposed. Here, we perform a structure-driven in vivo study of the XcpD secretin, which validates one of the organizations of the N-module whose flexibility enables alternative conformations. We also show the existence of the central gate in vivo and its required flexibility, which is key for substrate passage and watertightness control. Last, functional, genomic, and phylogenetic analyses indicate that the optional top gate provides a gain of watertightness. Our data illustrate how the gating properties of T2SS secretins allow these large channels to overcome the duality between the necessity of preserving the OM impermeability while simultaneously promoting the secretion of large, folded effectors.
Assuntos
Sistemas de Secreção Tipo II , Sistemas de Secreção Tipo II/química , Sistemas de Secreção Tipo II/metabolismo , Secretina/metabolismo , Filogenia , Ligação Proteica , Proteínas de Bactérias/metabolismoRESUMO
The type II secretion system enables gram-negative bacteria to secrete exoproteins into the extracellular milieu. We performed biophysical and biochemical experiments to identify systematic interactions between Pseudomonas aeruginosa Xcp type II secretion system components and their substrates. We observed that three Xcp components, XcpP(C), the secretin XcpQ(D), and the pseudopilus tip, directly and specifically interact with secreted exoproteins. We established that XcpP(C), in addition to its interaction with the substrate, likely shields the entire periplasmic portion of the secreton. It can therefore be considered as the recruiter of the machinery. Moreover, the direct interaction observed between the substrate and the pseudopilus tip validates the piston model hypothesis, in which the pseudopilus pushes the substrate through the secretin pore during the secretion process. All together, our results allowed us to propose a model of the different consecutive steps followed by the substrate during the type II secretion process.
Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Mapeamento de Interação de Proteínas , Pseudomonas aeruginosa/metabolismo , Via Secretória , Proteínas de Bactérias/química , Proteínas de Membrana Transportadoras/química , Elastase Pancreática/metabolismo , Periplasma/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Pseudomonas aeruginosa/citologia , Pseudomonas aeruginosa/enzimologiaRESUMO
In gram-negative bacteria, type II secretion systems assemble a piston-like structure, called pseudopilus, which expels exoproteins out of the cell. The pseudopilus is constituted by a major pseudopilin that when overproduced multimerizes into a long cell surface structure named hyper-pseudopilus. Pseudomonas aeruginosa possesses two type II secretion systems, Xcp and Hxc. Although major pseudopilins are exchangeable among type II secretion systems, we show that XcpT and HxcT are not. We demonstrate that HxcT does not form a hyper-pseudopilus and is different in amino acid sequence and multimerization properties. Using structure-based mutagenesis, we observe that five mutations are sufficient to revert HxcT into a functional XcpT-like protein, which also becomes capable of forming a hyper-pseudopilus. Phylogenetic and experimental analysis showed that the whole Hxc system was acquired by P. aeruginosa PAO1 and other Pseudomonas species through horizontal gene transfer. We thus identified a new type II secretion subfamily, of which the P. aeruginosa Hxc system is the archetype. This finding demonstrates how similar bacterial machineries evolve toward distinct mechanisms that may contribute specific functions.
Assuntos
Proteínas de Bactérias , Sistemas de Secreção Bacterianos/fisiologia , Evolução Molecular , Transferência Genética Horizontal/fisiologia , Pseudomonas aeruginosa , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fímbrias Bacterianas/genética , Fímbrias Bacterianas/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismoRESUMO
Pseudomonas aeruginosa secretes diverse proteins via its type 2 secretion system, including a 39â kDa chitin-binding protein, CbpD. CbpD has recently been shown to be a lytic polysaccharide monooxygenase active on chitin and to contribute substantially to virulence. To date, no structure of this virulence factor has been reported. Its first two domains are homologous to those found in the crystal structure of Vibrio cholerae GbpA, while the third domain is homologous to the NMR structure of the CBM73 domain of Cellvibrio japonicus CjLPMO10A. Here, the 3.0â Å resolution crystal structure of CbpD solved by molecular replacement is reported, which required ab initio models of each CbpD domain generated by the artificial intelligence deep-learning structure-prediction algorithm RoseTTAFold. The structure of CbpD confirms some previously reported substrate-specificity motifs among LPMOAA10s, while challenging the predictive power of others. Additionally, the structure of CbpD shows that post-translational modifications occur on the chitin-binding surface. Moreover, the structure raises interesting possibilities about how type 2 secretion-system substrates may interact with the secretion machinery and demonstrates the utility of new artificial intelligence protein structure-prediction algorithms in making challenging structural targets tractable.
Assuntos
Quitina , Oxigenases de Função Mista , Inteligência Artificial , Proteínas de Bactérias/química , Quitina/metabolismo , Oxigenases de Função Mista/química , Polissacarídeos/química , Polissacarídeos/metabolismo , Especificidade por SubstratoRESUMO
Pseudomonas aeruginosa utilizes the type II secretion machinery to transport virulence factors through the outer membrane into the extracellular space. Five proteins in the type II secretion system share sequence homology with pilin subunits of type IV pili and are called the pseudopilins. The major pseudopilin XcpT(G) assembles into an intraperiplasmic pilus and is thought to act in a piston-like manner to push substrates through an outer membrane secretin. The other four minor pseudopilins, XcpU(H), XcpV(I), XcpW(J) and XcpX(K), play less well defined roles in pseudopilus formation. It was recently discovered that these four minor pseudopilins form a quaternary complex that is presumed to initiate the formation of the pseudopilus and to localize to its tip. Here, the structure of XcpW(J) was refined to 1.85â Å resolution. The structure revealed the type IVa pilin fold with an embellished variable antiparallel ß-sheet as also found in the XcpW(J) homologue enterotoxigenic Escherichia coli GspJ(W) and the XcpU(H) homologue Vibrio cholerae EpsU(H). It is proposed that the exposed surface of this sheet may cradle the long N-terminal α1 helix of another pseudopilin. The final 31 amino acids of the XcpW(J) structure are instrinsically disordered. Deletion of this unstructured region of XcpW(J) did not prevent type II secretion in vivo.
Assuntos
Proteínas de Bactérias/química , Proteínas de Membrana/química , Pseudomonas aeruginosa/química , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Cristalografia por Raios X , Proteínas de Membrana/genética , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Alinhamento de Sequência , Homologia de Sequência de AminoácidosRESUMO
Although classical type II secretion systems (T2SSs) are widely present in Gram-negative bacteria, atypical T2SSs can be found in some species. In Pseudomonas aeruginosa, in addition to the classical T2SS Xcp, it was reported that two genes, xphA and xqhA, located outside the xcp locus were organized in an operon (PaQa) which encodes the orphan PaQa subunit. This subunit is able to associate with other components of the classical Xcp machinery to form a functional hybrid T2SS. In the present study, using a transcriptional lacZ fusion, we found that the PaQa operon was more efficiently expressed (i) on solid LB agar than in liquid LB medium, (ii) at 25 °C than at 37 °C and (iii) at an early stage of growth. These results suggested an adaptation of the hybrid system to particular environmental conditions. Transposon mutagenesis led to the finding that vfr and fimV genes are required for optimal expression of the orphan PaQa operon in the defined growth conditions used. Using an original culturing device designed to monitor secretion on solid medium, the ring-plate system, we found that T2SS-dependent secretion of exoproteins, namely the elastase LasB, was affected in a fimV deletion mutant. Our findings led to the discovery of an interplay between FimV and the global regulator Vfr triggering the modulation of the level of Vfr and consequently the modulation of T2SS-dependent secretion on solid medium.
Assuntos
Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos/fisiologia , Proteína Receptora de AMP Cíclico/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Pseudomonas aeruginosa/metabolismo , Adaptação Fisiológica , Proteínas de Bactérias/genética , Sistemas de Secreção Bacterianos/genética , Meios de Cultura , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Óperon Lac , Proteínas de Membrana Transportadoras/genética , Metaloendopeptidases/genética , Metaloendopeptidases/metabolismo , Domínios e Motivos de Interação entre Proteínas , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/crescimento & desenvolvimento , Deleção de SequênciaRESUMO
The type IV filament superfamily comprises widespread membrane-associated polymers in prokaryotes. The type II secretion system (T2SS), a virulence pathway in many pathogens, belongs to this superfamily. A knowledge gap in understanding of the T2SS is the molecular role of a small "pseudopilin" protein. Using multiple biophysical techniques, we have deciphered how this missing component of the Xcp T2SS architecture is structurally integrated, and thereby unlocked its function. We demonstrate that low-abundance XcpH is the adapter that bridges a trimeric initiating tip complex, XcpIJK, with a periplasmic filament of XcpG subunits. Each pseudopilin protein caps an XcpG protofilament in an overall pseudopilus compatible with dimensions of the periplasm and the outer membrane-spanning secretin through which substrates pass. Unexpectedly, to fulfill its adapter function, the XcpH N-terminal helix must be unwound, a property shared with XcpG subunits. We provide an experimentally validated three-dimensional structural model of a complete type IV filament.
Assuntos
Proteínas de Fímbrias/química , Sistemas de Secreção Tipo II/química , Sítios de Ligação , Proteínas de Fímbrias/metabolismo , Ligação Proteica , Multimerização Proteica , Pseudomonas aeruginosa/química , Sistemas de Secreção Tipo II/metabolismoRESUMO
The bacterial type II protein secretion (T2S) and type IV piliation (T4P) systems share several common features. In particular, it is well established that the T2S system requires the function of a pilus-like structure, called pseudopilus, which is built upon assembly of pilin-like subunits, called pseudopilins. Pilins and pseudopilins have a hydrophobic N-terminal region, which precedes an extended hydrophilic C-terminal region. In the case of pilins, it was shown that oligomerisation and formation of helical fibers, takes place through interaction between the hydrophobic domains. XcpT, is the most abundant protein of the Pseudomonas aeruginosa T2S, and was proposed to be the main component in the pseudopilus. In this study we present the high-resolution NMR structure of the hydrophilic domain of XcpT (XcpTp). XcpTp is lacking the C-terminal disulfide bridged "D" domain found in type IV pilins and likely involved in receptor binding. This is in agreement with the idea that the XcpT-containing pseudopilus is required for protein secretion and not for bacterial attachment. Interestingly, by solving the 3D structure of XcpTp we revealed that the previously called alphabeta-loop pilin region is in fact highly conserved among major type II pseudopilins and constitutes a specific consensus motif for identifying major pseudopilins, which belong to this family.
Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Pseudomonas aeruginosa/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Estrutura Secundária de Proteína , Homologia de Sequência de Aminoácidos , Homologia Estrutural de ProteínaRESUMO
Secretins are an unusual and important class of bacterial outer membrane (OM) proteins. They are involved in the transport of single proteins or macromolecular structures such as pili, needle complexes, and bacteriophages across the OM. Secretins are multimeric ring-shaped structures that form large pores in the OM. The targeting of such macromolecular structures to the OM often requires special assistance, conferred by specific pilotins or pilot proteins. Here, we investigated HxcQ, the OM component of the second Pseudomonas aeruginosa type II secretion system. We found that HxcQ forms high molecular mass structures resistant to heat and SDS, revealing its secretin nature. Interestingly, we showed that HxcQ is a lipoprotein. Construction of a recombinant nonlipidated HxcQ (HxcQnl) revealed that lipidation is essential for HxcQ function. Further phenotypic analysis indicated that HxcQnl accumulates as multimers in the inner membrane of P. aeruginosa, a typical phenotype observed for secretins in the absence of their cognate pilotin. Our observations led us to the conclusion that the lipid anchor of HxcQ plays a pilotin role. The self-piloting of HxcQ to the OM was further confirmed by its correct multimeric OM localization when expressed in the heterologous host Escherichia coli. Altogether, our results reveal an original and unprecedented pathway for secretin transport to the OM.
Assuntos
Proteínas da Membrana Bacteriana Externa/química , Lipídeos/química , Lipoproteínas/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Transporte Biológico , Centrifugação com Gradiente de Concentração , Detergentes/farmacologia , Escherichia coli/metabolismo , Ácido Palmítico/química , Peptídeos/química , Plasmídeos/química , Estrutura Terciária de Proteína , Pseudomonas aeruginosa/metabolismo , Secretina/químicaRESUMO
Gram-negative bacteria use the sophisticated type II secretion system (T2SS) to secrete a large number of exoproteins into the extracellular environment. Five proteins of the T2SS, the pseudopilins GspG-H-I-J-K, are proposed to assemble into a pseudopilus involved in the extrusion of the substrate through the outer membrane channel. Recent structural data have suggested that the three pseudopilins GspI-J-K are organized in a trimeric complex located at the tip of the GspG-containing pseudopilus. In the present work we combined two biochemical techniques to investigate the protein-protein interaction network between the five Pseudomonas aeruginosa Xcp pseudopilins. The soluble domains of XcpT-U-V-W-X (respectively homologous to GspG-H-I-J-K) were purified, and the interactions were tested by surface plasmon resonance and affinity co-purification in all possible combinations. We found an XcpV(I)-W(J)-X(K) complex, which demonstrates that the crystallized trimeric complex also exists in the P. aeruginosa T2SS. Interestingly, our systematic approach revealed an additional and yet uncharacterized interaction between XcpU(H) and XcpW(J). This observation suggested the existence of a quaternary, rather than ternary, complex (XcpU(H)-V(I)-W(J)-X(K)) at the tip of the pseudopilus. The assembly of this quaternary complex was further demonstrated by co-purification using affinity chromatography. Moreover, by testing various combinations of pseudopilins by surface plasmon resonance and affinity chromatography, we were able to dissect the different possible successive steps occurring during the formation of the quaternary complex. We propose a model in which XcpV(I) is the nucleator that first binds XcpX(K) and XcpW(J) at different sites. Then the ternary complex recruits XcpU(H) through a direct interaction with XcpW(J).