Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
EMBO J ; 40(3): e105537, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33351190

RESUMO

The netrin-1/DCC ligand/receptor pair has key roles in central nervous system (CNS) development, mediating axonal, and neuronal navigation. Although expression of netrin-1 and DCC is maintained in the adult brain, little is known about their role in mature neurons. Notably, netrin-1 is highly expressed in the adult substantia nigra, leading us to investigate a role of the netrin-1/DCC pair in adult nigral neuron fate. Here, we show that silencing netrin-1 in the adult substantia nigra of mice induces DCC cleavage and a significant loss of dopamine neurons, resulting in motor deficits. Because loss of adult dopamine neurons and motor impairments are features of Parkinson's disease (PD), we studied the potential impact of netrin-1 in different animal models of PD. We demonstrate that both overexpression of netrin-1 and brain administration of recombinant netrin-1 are neuroprotective and neurorestorative in mouse and rat models of PD. Of interest, we observed that netrin-1 levels are significantly reduced in PD patient brain samples. These results highlight the key role of netrin-1 in adult dopamine neuron fate, and the therapeutic potential of targeting netrin-1 signaling in PD.


Assuntos
Receptor DCC/metabolismo , Netrina-1/genética , Netrina-1/metabolismo , Doença de Parkinson/genética , Substância Negra/citologia , Animais , Morte Celular , Modelos Animais de Doenças , Neurônios Dopaminérgicos/citologia , Neurônios Dopaminérgicos/metabolismo , Regulação para Baixo , Feminino , Inativação Gênica , Humanos , Masculino , Camundongos , Doença de Parkinson/etiologia , Doença de Parkinson/metabolismo , Ratos , Transdução de Sinais , Substância Negra/metabolismo
2.
Eur J Neurosci ; 59(1): 132-153, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38072889

RESUMO

The existent pre-clinical models of Parkinson's disease do not simultaneously recapitulate severe degeneration of dopamine neurons and the occurrence of alpha-synuclein (aSyn) aggregation in one study system. In this study, we injected aSyn pre-formed fibrils (PFF) and 6-hydroxydopamine (6-OHDA) unilaterally into the striatum of C57BL/6 wild-type male mice at an interval of 2 weeks to induce aggregation of aSyn protein and trigger the loss of dopamine neurons simultaneously in one model and studied the behavioural effects of the combination in these mice. 6-OHDA was tested at three different doses, and 2 µg of 6-OHDA combined with PFF-induced aSyn aggregation was found to produce the most optimal disease phenotype. At 14 weeks timepoint, mice injected with a combination of PFF and 6-OHDA sustained significant damage to the nigrostriatal pathway and exhibited aSyn-positive aggregation. Our data suggest that the neurons that formed large aSyn aggregates were particularly vulnerable to 6-OHDA-induced degeneration. We also demonstrate the manifestation of a relatively aggressive pathology in 2- to 4-month-old mice, as compared to younger 7- to 9-week-old ones. Furthermore, cerebral dopamine neurotrophic factor (CDNF) administered intrastriatally rescued dopamine neurons and motor behaviour of the animals to some extent from 6-OHDA toxicity. However, no such effect could be seen in the novel 6-OHDA + PFFs combination model. For the first time, we demonstrate the combined effect of PFF and 6-OHDA simultaneously in one model. We further discuss the scope for further optimizing this combination model to develop it as a promising pre-clinical platform for drug screening and development.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Animais , Masculino , Camundongos , alfa-Sinucleína/metabolismo , Modelos Animais de Doenças , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Camundongos Endogâmicos C57BL , Fatores de Crescimento Neural/metabolismo , Fatores de Crescimento Neural/farmacologia , Oxidopamina , Doença de Parkinson/metabolismo
3.
Brain ; 146(9): 3783-3799, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36928391

RESUMO

Amyotrophic lateral sclerosis is a progressive neurodegenerative disease that affects motor neurons in the spinal cord, brainstem and motor cortex, leading to paralysis and eventually to death within 3-5 years of symptom onset. To date, no cure or effective therapy is available. The role of chronic endoplasmic reticulum stress in the pathophysiology of amyotrophic lateral sclerosis, as well as a potential drug target, has received increasing attention. Here, we investigated the mode of action and therapeutic effect of the endoplasmic reticulum-resident protein cerebral dopamine neurotrophic factor in three preclinical models of amyotrophic lateral sclerosis, exhibiting different disease development and aetiology: (i) the conditional choline acetyltransferase-tTA/TRE-hTDP43-M337V rat model previously described; (ii) the widely used SOD1-G93A mouse model; and (iii) a novel slow-progressive TDP43-M337V mouse model. To specifically analyse the endoplasmic reticulum stress response in motor neurons, we used three main methods: (i) primary cultures of motor neurons derived from embryonic Day 13 embryos; (ii) immunohistochemical analyses of spinal cord sections with choline acetyltransferase as spinal motor neuron marker; and (iii) quantitative polymerase chain reaction analyses of lumbar motor neurons isolated via laser microdissection. We show that intracerebroventricular administration of cerebral dopamine neurotrophic factor significantly halts the progression of the disease and improves motor behaviour in TDP43-M337V and SOD1-G93A rodent models of amyotrophic lateral sclerosis. Cerebral dopamine neurotrophic factor rescues motor neurons in vitro and in vivo from endoplasmic reticulum stress-associated cell death and its beneficial effect is independent of genetic disease aetiology. Notably, cerebral dopamine neurotrophic factor regulates the unfolded protein response initiated by transducers IRE1α, PERK and ATF6, thereby enhancing motor neuron survival. Thus, cerebral dopamine neurotrophic factor holds great promise for the design of new rational treatments for amyotrophic lateral sclerosis.


Assuntos
Esclerose Lateral Amiotrófica , Doenças Neurodegenerativas , Camundongos , Ratos , Animais , Esclerose Lateral Amiotrófica/metabolismo , Endorribonucleases/metabolismo , Endorribonucleases/farmacologia , Endorribonucleases/uso terapêutico , Superóxido Dismutase-1/genética , Colina O-Acetiltransferase/metabolismo , Colina O-Acetiltransferase/farmacologia , Colina O-Acetiltransferase/uso terapêutico , Dopamina/metabolismo , Doenças Neurodegenerativas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Neurônios Motores/metabolismo , Estresse do Retículo Endoplasmático , Fatores de Crescimento Neural/metabolismo
4.
Mol Ther ; 29(9): 2821-2840, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-33940158

RESUMO

A molecular hallmark in Parkinson's disease (PD) pathogenesis are α-synuclein aggregates. Cerebral dopamine neurotrophic factor (CDNF) is an atypical growth factor that is mostly resident in the endoplasmic reticulum but exerts its effects both intracellularly and extracellularly. One of the beneficial effects of CDNF can be protecting neurons from the toxic effects of α-synuclein. Here, we investigated the effects of CDNF on α-synuclein aggregation in vitro and in vivo. We found that CDNF directly interacts with α-synuclein with a KD = 23 ± 6 nM and reduces its auto-association. Using nuclear magnetic resonance (NMR) spectroscopy, we identified interaction sites on the CDNF protein. Remarkably, CDNF reduces the neuronal internalization of α-synuclein fibrils and induces the formation of insoluble phosphorylated α-synuclein inclusions. Intra-striatal CDNF administration alleviates motor deficits in rodents challenged with α-synuclein fibrils, though it did not reduce the number of phosphorylated α-synuclein inclusions in the substantia nigra. CDNF's beneficial effects on rodent behavior appear not to be related to the number of inclusions formed in the current context, and further study of its effects on the aggregation mechanism in vivo are needed. Nonetheless, the interaction of CDNF with α-synuclein, modifying its aggregation, spreading, and associated behavioral alterations, provides novel insights into the potential of CDNF as a therapeutic strategy in PD and other synucleinopathies.


Assuntos
Fatores de Crescimento Neural/química , Fatores de Crescimento Neural/metabolismo , Doença de Parkinson/fisiopatologia , Substância Negra/metabolismo , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Animais , Sítios de Ligação , Linhagem Celular , Modelos Animais de Doenças , Dopamina/metabolismo , Humanos , Espectroscopia de Ressonância Magnética , Masculino , Camundongos , Modelos Moleculares , Doença de Parkinson/metabolismo , Fosforilação , Cultura Primária de Células , Agregados Proteicos , Ligação Proteica , Conformação Proteica , Ratos
5.
Mov Disord ; 35(2): 245-255, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31840869

RESUMO

BACKGROUND: Motor symptoms of Parkinson's disease (PD) are caused by degeneration and progressive loss of nigrostriatal dopamine neurons. Currently, no cure for this disease is available. Existing drugs alleviate PD symptoms but fail to halt neurodegeneration. Glial cell line-derived neurotrophic factor (GDNF) is able to protect and repair dopamine neurons in vitro and in animal models of PD, but the clinical use of GDNF is complicated by its pharmacokinetic properties. The present study aimed to evaluate the neuronal effects of a blood-brain-barrier penetrating small molecule GDNF receptor Rearranged in Transfection agonist, BT13, in the dopamine system. METHODS: We characterized the ability of BT13 to activate RET in immortalized cells, to support the survival of cultured dopamine neurons, to protect cultured dopamine neurons against neurotoxin-induced cell death, to activate intracellular signaling pathways both in vitro and in vivo, and to regulate dopamine release in the mouse striatum as well as BT13's distribution in the brain. RESULTS: BT13 potently activates RET and downstream signaling cascades such as Extracellular Signal Regulated Kinase and AKT in immortalized cells. It supports the survival of cultured dopamine neurons from wild-type but not from RET-knockout mice. BT13 protects cultured dopamine neurons from 6-Hydroxydopamine (6-OHDA) and 1-methyl-4-phenylpyridinium (MPP+ )-induced cell death only if they express RET. In addition, BT13 is absorbed in the brain, activates intracellular signaling cascades in dopamine neurons both in vitro and in vivo, and also stimulates the release of dopamine in the mouse striatum. CONCLUSION: The GDNF receptor RET agonist BT13 demonstrates the potential for further development of novel disease-modifying treatments against PD. © 2019 International Parkinson and Movement Disorder Society.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Doença de Parkinson/metabolismo , Substância Negra/metabolismo , Animais , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Dopamina/metabolismo , Dopamina/farmacologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Camundongos , Oxidopamina/farmacologia , Doença de Parkinson Secundária/induzido quimicamente , Substância Negra/efeitos dos fármacos
6.
Development ; 143(3): 516-29, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26718003

RESUMO

Local inhibitory GABAergic and excitatory glutamatergic neurons are important for midbrain dopaminergic and hindbrain serotonergic pathways controlling motivation, mood, and voluntary movements. Such neurons reside both within the dopaminergic nuclei, and in adjacent brain structures, including the rostromedial and laterodorsal tegmental nuclei. Compared with the monoaminergic neurons, the development, heterogeneity, and molecular characteristics of these regulatory neurons are poorly understood. We show here that different GABAergic and glutamatergic subgroups associated with the monoaminergic nuclei express specific transcription factors. These neurons share common origins in the ventrolateral rhombomere 1, where the postmitotic selector genes Tal1, Gata2 and Gata3 control the balance between the generation of inhibitory and excitatory neurons. In the absence of Tal1, or both Gata2 and Gata3, the GABAergic precursors adopt glutamatergic fates and populate the glutamatergic nuclei in excessive numbers. Together, our results uncover developmental regulatory mechanisms, molecular characteristics, and heterogeneity of central regulators of monoaminergic circuits.


Assuntos
Diferenciação Celular , Núcleo Celular/metabolismo , Neurônios Dopaminérgicos/citologia , Mesencéfalo/citologia , Inibição Neural , Animais , Biomarcadores/metabolismo , Galinhas , Embrião de Mamíferos/metabolismo , Feminino , Fatores de Transcrição Forkhead/metabolismo , Neurônios GABAérgicos/citologia , Fatores de Transcrição GATA/metabolismo , Glutamatos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Mitose , Modelos Biológicos , Proteínas Repressoras/metabolismo , Serotonina/metabolismo , Substância Negra/citologia , Área Tegmentar Ventral/citologia , Ácido gama-Aminobutírico/metabolismo
7.
J Neurosci Res ; 97(3): 346-361, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30548446

RESUMO

Adeno-associated virus (AAV) vector-mediated delivery of human α-synuclein (α-syn) gene in rat substantia nigra (SN) results in increased expression of α-syn protein in the SN and striatum which can progressively degenerate dopaminergic neurons. Therefore, this model is thought to recapitulate the neurodegeneration in Parkinson's disease. Here, using AAV to deliver α-syn above the SN in male and female rats resulted in clear expression of human α-syn in the SN and striatum. The protein was associated with moderate behavioral deficits and some loss of tyrosine hydroxylase (TH) in the nigrostriatal areas. However, the immunohistochemistry results were highly variable and showed little to no correlation with behavior and the amount of α-syn present. Expression of green fluorescent protein (GFP) was used as a control to monitor gene delivery and expression efficacy. AAV-GFP resulted in a similar or greater TH loss compared to AAV-α-syn and therefore an additional vector that does not express a protein was tested. Vectors with double-floxed inverse open reading frame (DIO ORF) encoding fluorescent proteins that generate RNA that is not translated also resulted in TH downregulation in the SN but showed no significant behavioral deficits. These results demonstrate that although expression of wild-type human α-syn can cause neurodegeneration, the variability and lack of correlation with outcome measures are drawbacks with the model. Furthermore, design and control selection should be considered carefully because of conflicting conclusions due to AAV downregulation of TH, and we recommend caution with having highly regulated TH as the only marker for the dopamine system.


Assuntos
Substância Negra/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , alfa-Sinucleína/metabolismo , Animais , Dependovirus , Dopamina/metabolismo , Regulação para Baixo , Feminino , Humanos , Masculino , Modelos Animais , Doença de Parkinson/metabolismo , Ratos , Ratos Sprague-Dawley , Ratos Wistar
8.
Eur J Neurosci ; 48(6): 2354-2361, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30144349

RESUMO

Unbiased estimates of neuron numbers within substantia nigra are crucial for experimental Parkinson's disease models and gene-function studies. Unbiased stereological counting techniques with optical fractionation are successfully implemented, but are extremely laborious and time-consuming. The development of neural networks and deep learning has opened a new way to teach computers to count neurons. Implementation of a programming paradigm enables a computer to learn from the data and development of an automated cell counting method. The advantages of computerized counting are reproducibility, elimination of human error and fast high-capacity analysis. We implemented whole-slide digital imaging and deep convolutional neural networks (CNN) to count substantia nigra dopamine neurons. We compared the results of the developed method against independent manual counting by human observers and validated the CNN algorithm against previously published data in rats and mice, where tyrosine hydroxylase (TH)-immunoreactive neurons were counted using unbiased stereology. The developed CNN algorithm and fully cloud-embedded Aiforia™ platform provide robust and fast analysis of dopamine neurons in rat and mouse substantia nigra.


Assuntos
Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Redes Neurais de Computação , Substância Negra/metabolismo , Animais , Masculino , Camundongos , Transtornos Parkinsonianos/metabolismo , Ratos Wistar , Reprodutibilidade dos Testes , Tirosina 3-Mono-Oxigenase/metabolismo
9.
J Neurosci Res ; 94(4): 318-28, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26762168

RESUMO

Intrastriatal administration of 6-hydroxydopamine (6-OHDA) induces partial degeneration of the nigrostriatal pathway, mimicking the pathology of Parkinson's disease (PD). Setting up the partial lesion model can be challenging because a number of experimental settings can be altered. This study compares seven experimental settings in a single study on d-amphetamine-induced rotations, tyrosine hydroxylase (TH)-positive neurites in the striatum, dopamine transporter (DAT)-positive neurites in the striatum, and TH-positive cells in the substantia nigra pars compacta (SNpc) in rats. Moreover, we validate a new algorithm for estimating the number of TH-positive cells. We show that the behavior and immunoreactivity vary greatly depending on the injection settings, and we categorize the lesions as progressive, stable, or regressive based on d-amphetamine-induced rotations. The rotation behavior correlated with the degree of the lesion, analyzed by immunohistochemistry; the largest lesions were in the progressive group, and the smallest lesions were in the regressive group. We establish a new low-dose partial 6-OHDA lesion model in which a total of 6 µg was distributed evenly to three sites in the striatum at a 10° angle. The administration of low-dose 6-OHDA produced stable and reliable rotation behavior and induced partial loss of striatal TH-positive and DAT-positive neurites and TH-positive cells in the SNpc. This model is highly suitable for neurorestoration studies in the search for new therapies for PD, and the new algorithm increases the efficacy for estimating the number of dopamine neurons. This study can be extremely useful for laboratories setting up the partial 6-OHDA model.


Assuntos
Adrenérgicos/administração & dosagem , Adrenérgicos/toxicidade , Modelos Animais de Doenças , Oxidopamina/administração & dosagem , Oxidopamina/toxicidade , Transtornos Parkinsonianos , Animais , Corpo Estriado/efeitos dos fármacos , Neurônios Dopaminérgicos/efeitos dos fármacos , Imuno-Histoquímica , Injeções Intraventriculares , Masculino , Ratos , Ratos Wistar
10.
J Neuroinflammation ; 11: 209, 2014 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-25511018

RESUMO

BACKGROUND: The anti-inflammatory effect of the cerebral dopamine neurotrophic factor (CDNF) was shown recently in primary glial cell cultures, yet such effect remains unknown both in vivo and in 6-hydroxydopamine (6-OHDA) models of Parkinson's disease (PD). We addressed this issue by performing an intranigral transfection of the human CDNF (hCDNF) gene in the critical period of inflammation after a single intrastriatal 6-OHDA injection in the rat. METHODS: At day 15 after lesion, the plasmids p3xNBRE-hCDNF or p3xNBRE-EGFP, coding for enhanced green florescent protein (EGFP), were transfected into the rat substantia nigra (SN) using neurotensin (NTS)-polyplex. At day 15 post-transfection, we measured nitrite and lipoperoxide levels in the SN. We used ELISA to quantify the levels of TNF-α, IL-1ß, IL-6, endogenous rat CDNF (rCDNF) and hCDNF. We also used qRT-PCR to measure rCDNF and hCDNF transcripts, and immunofluorescence assays to evaluate iNOS, CDNF and glial cells (microglia, astrocytes and Neuron/Glial type 2 (NG2) cells). Intact SNs were additional controls. RESULTS: In the SN, 6-OHDA triggered nitrosative stress, increased inflammatory cytokines levels, and activated the multipotent progenitor NG2 cells, which convert into astrocytes to produce rCDNF. In comparison with the hemiparkinsonian rats that were transfected with the EGFP gene or without transfection, 6-OHDA treatment and p3xNBRE-hCDNF transfection increased the conversion of NG2 cells into astrocytes resulting in 4-fold increase in the rCDNF protein levels. The overexpressed CDNF reduced nitrosative stress, glial markers and IL-6 levels in the SN, but not TNF-α and IL-1ß levels. CONCLUSION: Our results show the anti-inflammatory effect of CDNF in a 6-OHDA rat of Parkinson's disease. Our results also suggest the possible participation of TNF-α, IL-1ß and IL-6 in rCDNF production by astrocytes, supporting their anti-inflammatory role.


Assuntos
Fatores de Crescimento Neural/biossíntese , Fatores de Crescimento Neural/genética , Oxidopamina/toxicidade , Substância Negra/efeitos dos fármacos , Substância Negra/metabolismo , Transfecção , Animais , Humanos , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/metabolismo , Injeções Intraventriculares , Masculino , Oxidopamina/administração & dosagem , Ratos , Ratos Wistar
11.
Nature ; 448(7149): 73-7, 2007 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-17611540

RESUMO

In Parkinson's disease, brain dopamine neurons degenerate most prominently in the substantia nigra. Neurotrophic factors promote survival, differentiation and maintenance of neurons in developing and adult vertebrate nervous system. The most potent neurotrophic factor for dopamine neurons described so far is the glial-cell-line-derived neurotrophic factor (GDNF). Here we have identified a conserved dopamine neurotrophic factor (CDNF) as a trophic factor for dopamine neurons. CDNF, together with its previously described vertebrate and invertebrate homologue the mesencephalic-astrocyte-derived neurotrophic factor, is a secreted protein with eight conserved cysteine residues, predicting a unique protein fold and defining a new, evolutionarily conserved protein family. CDNF (Armetl1) is expressed in several tissues of mouse and human, including the mouse embryonic and postnatal brain. In vivo, CDNF prevented the 6-hydroxydopamine (6-OHDA)-induced degeneration of dopaminergic neurons in a rat experimental model of Parkinson's disease. A single injection of CDNF before 6-OHDA delivery into the striatum significantly reduced amphetamine-induced ipsilateral turning behaviour and almost completely rescued dopaminergic tyrosine-hydroxylase-positive cells in the substantia nigra. When administered four weeks after 6-OHDA, intrastriatal injection of CDNF was able to restore the dopaminergic function and prevent the degeneration of dopaminergic neurons in substantia nigra. Thus, CDNF was at least as efficient as GDNF in both experimental settings. Our results suggest that CDNF might be beneficial for the treatment of Parkinson's disease.


Assuntos
Fatores de Crescimento Neural/fisiologia , Neurônios/fisiologia , Sequência de Aminoácidos , Animais , Encéfalo/embriologia , Encéfalo/metabolismo , Clonagem Molecular , Sequência Conservada , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Dopamina/metabolismo , Humanos , Hibridização In Situ , Masculino , Camundongos , Dados de Sequência Molecular , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo , Fatores de Crescimento Neural/uso terapêutico , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Neurônios/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Oxidopamina , Doença de Parkinson/tratamento farmacológico , Processamento de Proteína Pós-Traducional , RNA Mensageiro , Ratos , Ratos Wistar , Substância Negra/metabolismo
12.
Neurosci Lett ; 816: 137510, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37802418

RESUMO

Parkinson's disease (PD) is characterized by the loss of nigrostriatal dopamine (DA) neurons and the presence of alpha-synuclein (αSyn)-positive Lewy body (LB) pathology. In this study, we attempted to recapitulate both these features in a novel in vitro model for PD. To achieve this, we combined the αSyn pre-formed fibril (PFF)-seeded LB-like pathology with 6-hydroxydopamine (6-OHDA)-induced mitochondrial toxicity in mouse embryonic midbrain cultures. To pilot the model for therapeutics testing, we assessed the effects of cerebral dopamine neurotrophic factor (CDNF) on αSyn aggregation and neuron survival. PFF-seeded pathology did not lead to DA neuron loss even with the highest dose of PFFs. The combination of PFFs and 6-OHDA did not trigger additional neurodegeneration or LB-like pathology and instead presented DA neuron loss to a similar extent as with 6-OHDA only. CDNF did not affect the PFF-seeded αSyn pathology or the DA neuron survival in the combination model but showed a trend toward neuroprotection in the 6-OHDA-only cultures.


Assuntos
Doença de Parkinson , Sinucleinopatias , Camundongos , Animais , alfa-Sinucleína/metabolismo , Oxidopamina/toxicidade , Dopamina , Estudos de Viabilidade , Doença de Parkinson/patologia , Sinucleinopatias/patologia , Degeneração Neural/patologia , Mesencéfalo/metabolismo
13.
Cell Rep ; 42(2): 112066, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36739529

RESUMO

Mesencephalic astrocyte-derived neurotrophic factor (MANF) is an endoplasmic reticulum (ER)-located protein with cytoprotective effects in neurons and pancreatic ß cells in vitro and in models of neurodegeneration and diabetes in vivo. However, the exact mode of MANF action has remained elusive. Here, we show that MANF directly interacts with the ER transmembrane unfolded protein response (UPR) sensor IRE1α, and we identify the binding interface between MANF and IRE1α. The expression of wild-type MANF, but not its IRE1α binding-deficient mutant, attenuates UPR signaling by decreasing IRE1α oligomerization; phosphorylation; splicing of Xbp1, Atf6, and Txnip levels; and protecting neurons from ER stress-induced death. MANF-IRE1α interaction and not MANF-BiP interaction is crucial for MANF pro-survival activity in neurons in vitro and is required to protect dopamine neurons in an animal model of Parkinson's disease. Our data show IRE1α as an intracellular receptor for MANF and regulator of neuronal survival.


Assuntos
Endorribonucleases , Proteínas Serina-Treonina Quinases , Animais , Endorribonucleases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo , Neurônios Dopaminérgicos/metabolismo
14.
Front Cell Neurosci ; 15: 640084, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34305531

RESUMO

Multiple sclerosis (MS) is a progressive autoimmune disease characterized by T-cell mediated demyelination in central nervous system (CNS). Experimental autoimmune encephalomyelitis (EAE) is a widely used in vivo disease model of MS. Glucocorticoids such as dexamethasone (dex) function as immunosuppressants and are commonly used to treat acute exacerbations of MS. Dex is also often used as a positive control in EAE studies, as it has been shown to promote motor behavior, inhibit immune cell infiltration into the CNS and regulate the activation of glial cell in EAE. This study further validated the effects of intravenously administrated dex by time-dependent fashion in EAE. Dex postponed clinical signs and motor defects in early stages of EAE. Histological analysis revealed that the degeneration of myelin and axons, as well as the infiltration of peripheral immune cells into the white matter of spinal cord was inhibited by dex in early stages of EAE. Additionally, dex-treatment delayed the neuroinflammatory activation of microglia and astrocytes. Furthermore, this study analyzed the expression of the neurotrophic factor mesencephalic astrocyte-derived neurotrophic factor (MANF) in EAE, and the effect of treatment with dex on MANF-expression. We show that in dex-treated EAE mice expression MANF increased within myelinated areas of spinal cord white matter. We also show that intravenous administration with hMANF in EAE mice improved clinical signs and motor behavior in the early stage of EAE. Our report gives insight to the progression of EAE by providing a time-dependent analysis. Moreover, this study investigates the link between MANF and the EAE model, and shows that MANF is a potential drug candidate for MS.

15.
J Parkinsons Dis ; 11(3): 1023-1046, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34024778

RESUMO

BACKGROUND: Parkinson's disease (PD) is a progressive neurological disorder where loss of dopamine neurons in the substantia nigra and dopamine depletion in the striatum cause characteristic motor symptoms. Currently, no treatment is able to halt the progression of PD. Glial cell line-derived neurotrophic factor (GDNF) rescues degenerating dopamine neurons both in vitro and in animal models of PD. When tested in PD patients, however, the outcomes from intracranial GDNF infusion paradigms have been inconclusive, mainly due to poor pharmacokinetic properties. OBJECTIVE: We have developed drug-like small molecules, named BT compounds that activate signaling through GDNF's receptor, the transmembrane receptor tyrosine kinase RET, both in vitro and in vivo and are able to penetrate through the blood-brain barrier. Here we evaluated the properties of BT44, a second generation RET agonist, in immortalized cells, dopamine neurons and rat 6-hydroxydopamine model of PD. METHODS: We used biochemical, immunohistochemical and behavioral methods to evaluate the effects of BT44 on dopamine system in vitro and in vivo. RESULTS: BT44 selectively activated RET and intracellular pro-survival AKT and MAPK signaling pathways in immortalized cells. In primary midbrain dopamine neurons cultured in serum-deprived conditions, BT44 promoted the survival of the neurons derived from wild-type, but not from RET knockout mice. BT44 also protected cultured wild-type dopamine neurons from MPP+-induced toxicity. In a rat 6-hydroxydopamine model of PD, BT44 reduced motor imbalance and seemed to protect dopaminergic fibers in the striatum. CONCLUSION: BT44 holds potential for further development into a novel, possibly disease-modifying, therapy for PD.


Assuntos
Fármacos Neuroprotetores , Doença de Parkinson , Animais , Dopamina , Neurônios Dopaminérgicos/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Humanos , Camundongos , Fármacos Neuroprotetores/farmacologia , Oxidopamina/toxicidade , Proteínas Proto-Oncogênicas c-ret , Ratos , Substância Negra/metabolismo
16.
J Neurosci ; 29(30): 9651-9, 2009 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-19641128

RESUMO

Neurotrophic factors are promising candidates for the treatment of Parkinson's disease (PD). Mesencephalic astrocyte-derived neurotrophic factor (MANF) belongs to a novel evolutionarily conserved family of neurotrophic factors. We examined whether MANF has neuroprotective and neurorestorative effect in an experimental model of PD in rats. We also studied the distribution and transportation of intrastriatally injected MANF in the brain and compared it with glial cell line-derived neurotrophic factor (GDNF). Unilateral lesion of nigrostriatal dopaminergic system was induced by intrastriatal injection of 6-hydroxydopamine (6-OHDA). Amphetamine-induced turning behavior was monitored up to 12 weeks after the unilateral lesion. The local diffusion at the injection site and transportation profiles of intrastriatally injected MANF and GDNF were studied by immunohistochemical detection of the unlabeled growth factors as well as by autoradiographic and gamma counting detection of (125)I-labeled trophic factors. Intrastriatally injected MANF protected nigrostriatal dopaminergic nerves from 6-OHDA-induced degeneration as evaluated by counting tyrosine hydroxylase (TH)-positive cell bodies in the substantia nigra (SN) and TH-positive fibers in the striatum. More importantly, MANF also restored the function of the nigrostriatal dopaminergic system when administered either 6 h before or 4 weeks after 6-OHDA administration in the striatum. MANF was distributed throughout the striatum more readily than GDNF. The mechanism of MANF action differs from that of GDNF because intrastriatally injected (125)I-MANF was transported to the frontal cortex, whereas (125)I-GDNF was transported to the SN. Our results suggest that MANF is readily distributed throughout the striatum and has significant therapeutic potential for the treatment of PD.


Assuntos
Proteínas do Tecido Nervoso/administração & dosagem , Fármacos Neuroprotetores/administração & dosagem , Doença de Parkinson Secundária/tratamento farmacológico , Animais , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/fisiopatologia , Modelos Animais de Doenças , Dopamina/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/administração & dosagem , Fator Neurotrófico Derivado de Linhagem de Célula Glial/farmacocinética , Humanos , Masculino , Atividade Motora/efeitos dos fármacos , Degeneração Neural/tratamento farmacológico , Fatores de Crescimento Neural , Proteínas do Tecido Nervoso/farmacocinética , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Fármacos Neuroprotetores/farmacocinética , Oxidopamina , Doença de Parkinson Secundária/induzido quimicamente , Ratos , Ratos Wistar , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/farmacocinética , Substância Negra/efeitos dos fármacos , Substância Negra/fisiopatologia , Fatores de Tempo
17.
Front Neurol Neurosci Res ; 1: 100004, 2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33479704

RESUMO

Parkinson's disease (PD) is an incurable neurodegenerative disorder affecting up to 10 million people in the world. Diagnostic motor symptoms of PD appear as a result of progressive degeneration and death of nigrostriatal dopamine neurons. Current PD treatments only relieve symptoms without halting the progression of the disease, and their use is complicated by severe adverse effects emerging as the disease progresses. Therefore, there is an urgent need for new therapies for PD management. We developed a small molecule compound, BT13, targeting receptor tyrosine kinase RET. RET is the signalling receptor for a known survival factor for dopamine neurons called glial cell line-derived neurotrophic factor (GDNF). Previously we showed that BT13 prevents the death of cultured dopamine neurons, stimulates dopamine release and activates pro-survival signalling cascades in naïve rodent brain. In the present study, we evaluate the effects of BT13 on motor imbalance and nigrostriatal dopamine neurons in a unilateral 6-hydroxydopamine rat model of PD. We show that BT13 alleviates motor dysfunction in experimental animals. Further studies are needed to make a conclusion whether BT13 can protect the integrity of the nigrostriatal dopamine system since even the positive control, GDNF protein, was unable to produce a clear neuroprotective effect in the model used in the present work. In contrast to GDNF, BT13 is able to cross the blood-brain barrier, which together with the ability to reduce motor symptoms of the disease makes it a valuable lead for further development as a potential disease-modifying agent to treat PD.

18.
Neuron ; 108(4): 784-796.e3, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33022226

RESUMO

Mordes et al. (2020) did not detect the survival or motor phenotypes in C9orf72 BAC transgenic mice originally described by Liu et al. (2016). We discuss methodological differences between the Mordes and Liu studies, several additional studies in which survival and motor phenotypes were found, and possible environmental and genetic effects. First, Nguyen et al. (2020) showed robust ALS/FTD phenotypes in C9-BAC versus non-transgenic (NT) mice and that α-GA1 treatment improved survival, behavior, and neurodegeneration. The groups of Gelbard and Saxena also show decreased survival of C9-BAC versus NT mice and neuropathological and behavioral deficits similar to those shown by Liu et al. (2016). Although FVB/N mice can have seizures, increases in seizure severity and death of C9 and NT animals, which may mask C9 disease phenotypes, have been observed in recent C9-500 FVB/NJ-bred cohorts. In summary, we provide an update on phenotypes seen in FVB C9-BAC mice and additional details to successfully use this model. This Matters Arising Response paper addresses the Mordes et al. (2020) Matters Arising paper, published concurrently in Neuron.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Esclerose Lateral Amiotrófica/genética , Animais , Proteína C9orf72/genética , Expansão das Repetições de DNA , Modelos Animais de Doenças , Demência Frontotemporal/genética , Camundongos , Camundongos Transgênicos , Fenótipo
19.
J Parkinsons Dis ; 10(3): 875-891, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32508331

RESUMO

The concept of repairing the brain with growth factors has been pursued for many years in a variety of neurodegenerative diseases including primarily Parkinson's disease (PD) using glial cell line-derived neurotrophic factor (GDNF). This neurotrophic factor was discovered in 1993 and shown to have selective effects on promoting survival and regeneration of certain populations of neurons including the dopaminergic nigrostriatal pathway. These observations led to a series of clinical trials in PD patients including using infusions or gene delivery of GDNF or the related growth factor, neurturin (NRTN). Initial studies, some of which were open label, suggested that this approach could be of value in PD when the agent was injected into the putamen rather than the cerebral ventricles. In subsequent double-blind, placebo-controlled trials, the most recent reporting in 2019, treatment with GDNF did not achieve its primary end point. As a result, there has been uncertainty as to whether GDNF (and by extrapolation, related GDNF family neurotrophic factors) has merit in the future treatment of PD. To critically appraise the existing work and its future, a special workshop was held to discuss and debate this issue. This paper is a summary of that meeting with recommendations on whether there is a future for this therapeutic approach and also what any future PD trial involving GDNF and other GDNF family neurotrophic factors should consider in its design.


Assuntos
Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Doença de Parkinson/terapia , Animais , Neurônios Dopaminérgicos/metabolismo , Terapia Genética/métodos , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Humanos , Doença de Parkinson/metabolismo
20.
Front Neurosci ; 13: 590, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31244598

RESUMO

Cerebral dopamine neurotrophic factor (CDNF) has shown therapeutic potential in rodent and non-human primate models of Parkinson's disease by protecting the dopamine neurons from degeneration and even restoring their phenotype and function. Previously, neurorestorative efficacy of CDNF in the 6-hydroxydopamine (6-OHDA) model of Parkinson's disease as well as diffusion of the protein in the striatum (STR) has been demonstrated and studied. Here, experiments were performed to characterize the diffusion and transport of supra-nigral CDNF in non-lesioned rats. We injected recombinant human CDNF to the substantia nigra (SN) of naïve male Wistar rats and analyzed the brains 2, 6, and 24 h after injections. We performed immunohistochemical stainings using an antibody specific to human CDNF and radioactivity measurements after injecting iodinated CDNF. Unlike the previously reported striatonigral retrograde transport seen after striatal injection, active anterograde transport of CDNF to the STR could not be detected after nigral injection. There was, however, clear diffusion of CDNF to the brain areas surrounding the SN, and CDNF colocalized with tyrosine hydroxylase (TH)-positive neurons. Overall, our results provide insight on how CDNF injected to the SN may act in this region of the brain.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA