Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Faraday Discuss ; 227: 46-60, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33295354

RESUMO

Stabilisers, such as surfactants, polymers and polyaromatic molecules, offer an effective way to produce graphene dispersions in water by Liquid Phase Exfoliation (LPE) without degrading the properties of graphene. In particular, pyrene derivatives provide better exfoliation efficiency than traditional surfactants and polymers. A stabiliser is expected to be relatively soluble in order to disperse hydrophobic graphene in water. Here, we show that exfoliation can also be achieved with insoluble pyrene stabilisers if appropriately designed. In particular, bis-pyrene stabilisers (BPSs) functionalised with pyrrolidine provide a higher exfoliation efficiency and percentage of single layers compared to traditional pyrene derivatives under the same experimental conditions. This is attributed to the enhanced interactions between BPS and graphene, provided by the presence of two pyrene binding groups. This approach is therefore attractive not only to produce highly concentrated graphene, but also to use graphene to disperse insoluble molecules in water. The enhanced adsorption of BPS on graphene, however, is reflected in higher toxicity towards human epithelial bronchial immortalized cells, limiting the use of this material for biomedical applications.

2.
Chem Res Toxicol ; 33(5): 1226-1236, 2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32319286

RESUMO

Nanoparticles (NPs) are widely used in food, and analysis of their potential gastrointestinal toxicity is necessary. The present study was designed to determine the effects of silica dioxide (SiO2), titanium dioxide (TiO2), and zinc oxide (ZnO) NPs on cultured THP-1 monocyte-derived macrophages and human epithelial colorectal adenocarcinoma (Caco-2) cells. Exposure to ZnO NPs for 24 h increased the production of redox response species (ROS) and reduced cell viability in a dose-dependent manner in THP-1 macrophages and Caco-2 cells. Although TiO2 and SiO2 NPs induced oxidative stress, they showed no apparent cytotoxicity against both cell types. The effects of functionalized SiO2 NPs on undifferentiated and differentiated Caco-2 cells were investigated using fluorescently labeled SiO2 NPs with neutral, positive, or negative surface charge. Exposure of both types of cells to the three kinds of SiO2 NPs significantly increased their interaction in a dose-dependent manner. The largest interaction with both types of cells was noted with exposure to more negatively surface-charged SiO2 NPs. Exposure to either positively or negatively, but not neutrally, surface-charged SiO2 NPs increased NO levels in differentiated Caco-2 cells. Exposure of differentiated Caco-2 cells to positively or negatively surface-charged SiO2 NPs also upregulated interleukin-8 expression. We conclude that functionalized surface-charged SiO2 NPs can induce pro-inflammatory responses but are noncytotoxic.


Assuntos
Interleucina-8/biossíntese , Nanopartículas/química , Óxido Nítrico/biossíntese , Dióxido de Silício/farmacologia , Células CACO-2 , Humanos , Dióxido de Silício/química , Propriedades de Superfície
3.
Nano Lett ; 19(5): 2858-2870, 2019 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-30983361

RESUMO

Synapses compute and transmit information to connect neural circuits and are at the basis of brain operations. Alterations in their function contribute to a vast range of neuropsychiatric and neurodegenerative disorders and synapse-based therapeutic intervention, such as selective inhibition of synaptic transmission, may significantly help against serious pathologies. Graphene is a two-dimensional nanomaterial largely exploited in multiple domains of science and technology, including biomedical applications. In hippocampal neurons in culture, small graphene oxide nanosheets (s-GO) selectively depress glutamatergic activity without altering cell viability. Glutamate is the main excitatory neurotransmitter in the central nervous system and growing evidence suggests its involvement in neuropsychiatric disorders. Here we demonstrate that s-GO directly targets the release of presynaptic vesicle. We propose that s-GO flakes reduce the availability of transmitter, via promoting its fast release and subsequent depletion, leading to a decline ofglutamatergic neurotransmission. We injected s-GO in the hippocampus in vivo, and 48 h after surgery ex vivo patch-clamp recordings from brain slices show a significant reduction in glutamatergic synaptic activity in respect to saline injections.


Assuntos
Grafite/farmacologia , Nanoestruturas/química , Doenças Neurodegenerativas/tratamento farmacológico , Neurônios/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Fármacos Atuantes sobre Aminoácidos Excitatórios/síntese química , Fármacos Atuantes sobre Aminoácidos Excitatórios/química , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Ácido Glutâmico/metabolismo , Grafite/síntese química , Grafite/química , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Humanos , Nanoestruturas/uso terapêutico , Doenças Neurodegenerativas/fisiopatologia , Neurônios/metabolismo , Cultura Primária de Células , Pontos Quânticos/química , Ratos , Ratos Wistar , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Transmissão Sináptica/efeitos dos fármacos
4.
Int J Mol Sci ; 20(4)2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-30781642

RESUMO

As the use of nanoparticles (NPs) is increasing, the potential toxicity and behavior of NPs in living systems need to be better understood. Our goal was to evaluate the developmental toxicity and bio-distribution of two different sizes of fluorescently-labeled SiO2 NPs, 25 and 115 nm, with neutral surface charge or with different surface functionalization, rendering them positively or negatively charged, in order to predict the effect of NPs in humans. We performed a zebrafish embryo toxicity test (ZFET) by exposing the embryos to SiO2 NPs starting from six hours post fertilization (hpf). Survival rate, hatching time, and gross morphological changes were assessed at 12, 24, 36, 48, 60, and 72 hpf. We evaluated the effect of NPs on angiogenesis by counting the number of sub-intestinal vessels between the second and seventh intersegmental vessels and gene expression analysis of vascular endothelial growth factor (VEGF) and VEGF receptors at 72 hpf. SiO2 NPs did not show any adverse effects on survival rate, hatching time, gross morphology, or physiological angiogenesis. We found that SiO2 NPs were trapped by the chorion up until to the hatching stage. After chemical removal of the chorion (dechorionation), positively surface-charged SiO2 NPs (25 nm) significantly reduced the survival rate of the fish compared to the control group. These results indicate that zebrafish chorion acts as a physical barrier against SiO2 NPs, and removing the chorions in ZFET might be necessary for evaluation of toxicity of NPs.


Assuntos
Embrião não Mamífero/efeitos dos fármacos , Nanopartículas/toxicidade , Dióxido de Silício/toxicidade , Testes de Toxicidade , Peixe-Zebra/embriologia , Animais , Córion/metabolismo , Embrião não Mamífero/anatomia & histologia , Embrião não Mamífero/irrigação sanguínea , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Substâncias Protetoras/metabolismo , Receptores de Fatores de Crescimento do Endotélio Vascular/genética , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Análise de Sobrevida , Suspensões , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
5.
Arch Toxicol ; 91(1): 353-363, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26872950

RESUMO

Nanoparticles (NP) have a tendency to agglomerate after dispersion in physiological media, which can be prevented by the addition of serum. This may however result in modification of the toxic potential of particles due to the formation of protein corona. Our study aimed to analyze the role of serum that is added to improve the dispersion of 10 nm TiO2 NPs on in vitro and in vivo effects following the exposure via the respiratory route. We characterized NP size, surface charge, sedimentation rate, the presence of protein corona and the oxidant-generating capacity after NP dispersion in the presence/absence of serum. The effect of serum on NP internalization, cytotoxicity and pro-inflammatory responses was assessed in a human pulmonary cell line, NCI-H292. Serum in the dispersion medium led to a slower sedimentation, but an enhanced cellular uptake of TiO2 NPs. Despite this greater uptake, the pro-inflammatory response in NCI-H292 cells was lower after serum supplementation (used either as a dispersant or as a cell culture additive), which may be due to a reduced intrinsic oxidative potential of TiO2 NPs. Interestingly, serum could be added 2 h after the NP treatment without affecting the pro-inflammatory response. We also determined the acute pulmonary and hepatic toxicity in vivo 24 h after intratracheal instillation of TiO2 NPs in C57BL/6N mice. The use of serum resulted in an underestimation of the local acute inflammatory response in the lung, while a systemic response on glutathione reduction remained unaffected. In conclusion, serum as a dispersion agent for TiO2 NPs can lead to an underestimation of the acute pro-inflammatory response in vitro and in vivo. To avoid potential unwanted effects of dispersants and medium components, we recommend that the protocol of NM preparation should be thoroughly tested, and reflect as close as possible realistic exposure conditions.


Assuntos
Fígado/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Oxidantes/toxicidade , Veículos Farmacêuticos/química , Mucosa Respiratória/efeitos dos fármacos , Soro/química , Titânio/toxicidade , Absorção Fisiológica , Administração por Inalação , Animais , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/imunologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Fenômenos Químicos , Feminino , Fígado/imunologia , Fígado/metabolismo , Nanopartículas Metálicas/administração & dosagem , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Camundongos Endogâmicos C57BL , Oxidantes/administração & dosagem , Oxidantes/química , Oxidantes/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Tamanho da Partícula , Distribuição Aleatória , Mucosa Respiratória/imunologia , Mucosa Respiratória/metabolismo , Propriedades de Superfície , Suspensões , Titânio/administração & dosagem , Titânio/química , Titânio/metabolismo , Testes de Toxicidade Aguda
6.
Nanoscale ; 16(11): 5653-5664, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38414413

RESUMO

Graphene Oxide (GO) has been shown to increase the expression of key cartilage genes and matrix components within 3D scaffolds. Understanding the mechanisms behind the chondroinductive ability of GO is critical for developing articular cartilage regeneration therapies but remains poorly understood. The objectives of this work were to elucidate the effects of GO on the key chondrogenic signalling pathway - TGFß and identify the mechanism through which signal activation is achieved in human chondrocytes. Activation of canonical signalling was validated through GO-induced SMAD-2 phosphorylation and upregulation of known TGFß response genes, while the use of a TGFß signalling reporter assay allowed us to identify the onset of GO-induced signal activation which has not been previously reported. Importantly, we investigate the cell-material interactions and molecular mechanisms behind these effects, establishing a novel link between GO, the plasma membrane and intracellular signalling. By leveraging fluorescent lifetime imaging (FLIM) and a membrane tension probe, we reveal GO-mediated increases in plasma membrane tension, in real-time for the first time. Furthermore, we report the activation of mechanosensory pathways which are known to be regulated by changes in plasma membrane tension and reveal the activation of endogenous latent TGFß in the presence of GO, providing a mechanism for signal activation. The data presented here are critical to understanding the chondroinductive properties of GO and are important for the implementation of GO in regenerative medicine.


Assuntos
Cartilagem Articular , Condrócitos , Grafite , Humanos , Fator de Crescimento Transformador beta/metabolismo , Linhagem Celular , Membrana Celular/metabolismo
7.
ACS Nano ; 18(8): 6038-6094, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38350010

RESUMO

Two-dimensional (2D) materials have attracted tremendous interest ever since the isolation of atomically thin sheets of graphene in 2004 due to the specific and versatile properties of these materials. However, the increasing production and use of 2D materials necessitate a thorough evaluation of the potential impact on human health and the environment. Furthermore, harmonized test protocols are needed with which to assess the safety of 2D materials. The Graphene Flagship project (2013-2023), funded by the European Commission, addressed the identification of the possible hazard of graphene-based materials as well as emerging 2D materials including transition metal dichalcogenides, hexagonal boron nitride, and others. Additionally, so-called green chemistry approaches were explored to achieve the goal of a safe and sustainable production and use of this fascinating family of nanomaterials. The present review provides a compact survey of the findings and the lessons learned in the Graphene Flagship.

8.
Part Fibre Toxicol ; 10: 2, 2013 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-23388071

RESUMO

BACKGROUND: The uptake of nanoparticles (NPs) by cells remains to be better characterized in order to understand the mechanisms of potential NP toxicity as well as for a reliable risk assessment. Real NP uptake is still difficult to evaluate because of the adsorption of NPs on the cellular surface. RESULTS: Here we used two approaches to distinguish adsorbed fluorescently labeled NPs from the internalized ones. The extracellular fluorescence was either quenched by Trypan Blue or the uptake was analyzed using imaging flow cytometry. We used this novel technique to define the inside of the cell to accurately study the uptake of fluorescently labeled (SiO2) and even non fluorescent but light diffracting NPs (TiO2). Time course, dose-dependence as well as the influence of surface charges on the uptake were shown in the pulmonary epithelial cell line NCI-H292. By setting up an integrative approach combining these flow cytometric analyses with confocal microscopy we deciphered the endocytic pathway involved in SiO2 NP uptake. Functional studies using energy depletion, pharmacological inhibitors, siRNA-clathrin heavy chain induced gene silencing and colocalization of NPs with proteins specific for different endocytic vesicles allowed us to determine macropinocytosis as the internalization pathway for SiO2 NPs in NCI-H292 cells. CONCLUSION: The integrative approach we propose here using the innovative imaging flow cytometry combined with confocal microscopy could be used to identify the physico-chemical characteristics of NPs involved in their uptake in view to redesign safe NPs.


Assuntos
Endocitose , Células Epiteliais/efeitos dos fármacos , Citometria de Fluxo/métodos , Microscopia Confocal/métodos , Nanopartículas , Dióxido de Silício , Adsorção , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Endocitose/fisiologia , Células Epiteliais/metabolismo , Corantes Fluorescentes/química , Humanos , Nanopartículas/química , Nanopartículas/toxicidade , Tamanho da Partícula , Dióxido de Silício/química , Dióxido de Silício/toxicidade , Propriedades de Superfície , Azul Tripano/química
9.
BMC Nephrol ; 14: 96, 2013 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-23617532

RESUMO

BACKGROUND: It has been shown that nanomaterials (NMs) are able to translocate to secondary tissues one of the important being the kidneys. Oxidative stress has been implicated as a possible mechanism for NM toxicity, hence effects on the human renal proximal tubule epithelial cells (HK-2) treated with a panel of engineered nanomaterials (NMs) consisting of two zinc oxide particles (ZnO - coated - NM 110 and uncoated - NM 111), two multi walled carbon nanotubes (MWCNT) (NM 400 and NM 402), one silver (NM 300) and five TiO2 NMs (NM 101, NRCWE 001, 002, 003 and 004) were evaluated. METHODS: In order to assess the toxicological impact of the engineered NMs on HK-2 cells - WST-1 cytotoxicity assay, FACSArray, HE oxidation and the comet assays were utilised. For statistical analysis, the experimental values were compared to their corresponding controls using an ANOVA with Tukey's multiple comparison. RESULTS: We found the two ZnO NMs (24 hr LC50 - 2.5 µg/cm2) and silver NM (24 hr LC50 - 10 µg/cm2) were highly cytotoxic to the cells. The LC50 was not attained in the presence of any of the other engineered nanomaterials (up to 80 µg/cm2). All nanomaterials significantly increased IL8 and IL6 production. Meanwhile no significant change in TNF-α or MCP-1 was detectable. The most notable increase in ROS was noted following treatment with the Ag and the two ZnO NMs. Finally, genotoxicity was measured at sub-lethal concentrations. We found a small but significant increase in DNA damage following exposure to seven of the ten NMs investigated (NM 111, NRCWE 001 and NRCWE 003 being the exception) with this increase being most visible following exposure to Ag and the positively charged TiO2. CONCLUSIONS: While the NMs could be categorised as low and highly cytotoxic, sub-lethal effects such as cytokine production and genotoxicity were observed with some of the low toxicity materials.


Assuntos
Engenharia Biomédica/métodos , Citotoxinas/toxicidade , Dano ao DNA/efeitos dos fármacos , Mediadores da Inflamação , Nanoestruturas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Animais , Bovinos , Linhagem Celular , Linhagem Celular Transformada , Citotoxinas/química , Dano ao DNA/fisiologia , Humanos , Mediadores da Inflamação/metabolismo , Rim/efeitos dos fármacos , Rim/metabolismo , Nanoestruturas/química , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/metabolismo
10.
Nanoscale ; 15(21): 9348-9364, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37165691

RESUMO

Enzyme replacement therapy shows remarkable clinical improvement in treating lysosomal storage disorders. However, this therapeutic approach is hampered by limitations in the delivery of the enzyme to cells and tissues. Therefore, there is an urgent, unmet clinical need to develop new strategies to enhance the enzyme delivery to diseased cells. Graphene-based materials, due to their dimensionality and favourable pattern of interaction with cells, represent a promising platform for the loading and delivery of therapeutic cargo. Herein, the potential use of graphene-based materials, including defect-free graphene with positive or negative surface charge and graphene oxide with different lateral dimensions, was investigated for the delivery of lysosomal enzymes in fibroblasts derived from patients with Mucopolysaccharidosis VI and Pompe disease. We report excellent biocompatibility of all graphene-based materials up to a concentration of 100 µg mL-1 in the cell lines studied. In addition, a noticeable difference in the uptake profile of the materials was observed. Neither type of graphene oxide was taken up by the cells to a significant extent. In contrast, the two types of graphene were efficiently taken up, localizing in the lysosomes. Furthermore, we demonstrate that cationic graphene flakes can be used as carriers for arylsulfatase B enzyme, for the delivery of the lacking enzyme to the lysosomes of Mucopolysaccharidosis VI fibroblasts. Arylsulfatase B complexed with cationic graphene flakes not only retained the enzymatic activity, but also exerted biological effects almost twice as high as arylsulfatase B alone in the clearance of the substrate in Mucopolysaccharidosis VI fibroblasts. This study lays the groundwork for the potential use of graphene-based materials as carriers for enzyme replacement therapy in lysosomal storage disorders.


Assuntos
Grafite , Mucopolissacaridose VI , N-Acetilgalactosamina-4-Sulfatase , Humanos , Grafite/metabolismo , N-Acetilgalactosamina-4-Sulfatase/metabolismo , Mucopolissacaridose VI/metabolismo , Fibroblastos , Lisossomos/metabolismo
11.
ACS Appl Nano Mater ; 5(9): 12626-12636, 2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36185165

RESUMO

In this work, we apply liquid cascade centrifugation to highly concentrated graphene dispersions produced by liquid-phase exfoliation in water with an insoluble bis-pyrene stabilizer to obtain fractions containing nanosheets with different lateral size distributions. The concentration, stability, size, thickness, and the cytotoxicity profile are studied as a function of the initial stabilizer concentration for each fraction. Our results show that there is a critical initial amount of stabilizer (0.4 mg/mL) above which the dispersions show reduced concentration, stability, and biocompatibility, no matter the lateral size of the flakes.

12.
Nanoscale ; 14(46): 17297-17314, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36374249

RESUMO

An important aspect of immunotherapy is the ability of dendritic cells (DCs) to prime T cell immunity, an approach that has yielded promising results in some early phase clinical trials. However, novel approaches are required to improve DC therapeutic efficacy by enhancing their uptake of, and activation by, disease relevant antigens. The carbon nano-material graphene oxide (GO) may provide a unique way to deliver antigen to innate immune cells and modify their ability to initiate effective adaptive immune responses. We have assessed whether GO of various lateral sizes affects DC activation and function in vitro and in vivo, including their ability to take up, process and present the well-defined model antigen ovalbumin (OVA). We have found that GO flakes are internalised by DCs, while having minimal effect on their viability, activation phenotype or cytokine production. Although adsorption of OVA protein to either small or large GO flakes promoted its uptake into DCs, large GO interfered with OVA processing. In terms of modulation of DC function, delivery of OVA via small GO flakes significantly enhanced DC ability to induce proliferation of OVA-specific CD4+ T cells, promoting granzyme B secretion in vitro. On the other hand, delivery of OVA via large GO flakes augmented DC ability to induce proliferation of OVA-specific CD8+ T cells, and their production of IFN-γ and granzyme B. Together, these data demonstrate the capacity of GO of different lateral dimensions to act as a promising delivery platform for DC modulation of distinct facets of the adaptive immune response, information that could be exploited for future development of targeted immunotherapies.


Assuntos
Linfócitos T CD8-Positivos , Células Dendríticas , Animais , Camundongos , Granzimas/metabolismo , Ovalbumina , Antígenos , Citocinas/metabolismo , Camundongos Endogâmicos C57BL
13.
Nanoscale Adv ; 3(14): 4166-4185, 2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-36132849

RESUMO

Graphene oxide (GO) holds great potential for biomedical applications, however fundamental understanding of the way it interacts with biological systems is still lacking even though it is essential for successful clinical translation. In this study, we exploit intrinsic fluorescent properties of thin GO sheets to establish the relationship between lateral dimensions of the material, its cellular uptake mechanisms and intracellular fate over time. Label-free GO with distinct lateral dimensions, small (s-GO) and ultra-small (us-GO) were thoroughly characterised both in water and in biologically relevant cell culture medium. Interactions of the material with a range of non-phagocytic mammalian cell lines (BEAS-2B, NIH/3T3, HaCaT, 293T) were studied using a combination of complementary analytical techniques (confocal microscopy, flow cytometry and TEM). The uptake mechanism was initially interrogated using a range of pharmaceutical inhibitors and validated using polystyrene beads of different diameters (0.1 and 1 µm). Subsequently, RNA-Seq was used to follow the changes in the uptake mechanism used to internalize s-GO flakes over time. Regardless of lateral dimensions, both types of GO were found to interact with the plasma membrane and to be internalized by a panel of cell lines studied. However, s-GO was internalized mainly via macropinocytosis while us-GO was mainly internalized via clathrin- and caveolae-mediated endocytosis. Importantly, we report the shift from macropinocytosis to clathrin-dependent endocytosis in the uptake of s-GO at 24 h, mediated by upregulation of mTORC1/2 pathway. Finally, we show that both s-GO and us-GO terminate in lysosomal compartments for up to 48 h. Our results offer an insight into the mechanism of interaction of GO with non-phagocytic cell lines over time that can be exploited for the design of biomedically-applicable 2D transport systems.

14.
Nanoscale Horiz ; 5(8): 1250-1263, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32558850

RESUMO

Graphene oxide (GO), an oxidised form of graphene, is widely used for biomedical applications, due to its dispersibility in water and simple surface chemistry tunability. In particular, small (less than 500 nm in lateral dimension) and thin (1-3 carbon monolayers) graphene oxide nanosheets (s-GO) have been shown to selectively inhibit glutamatergic transmission in neuronal cultures in vitro and in brain explants obtained from animals injected with the nanomaterial. This raises the exciting prospect that s-GO can be developed as a platform for novel nervous system therapeutics. It has not yet been investigated whether the interference of the nanomaterial with neurotransmission may have a downstream outcome in modulation of behaviour depending specifically on the activation of those synapses. To address this problem we use early stage zebrafish as an in vivo model to study the impact of s-GO on nervous system function. Microinjection of s-GO into the embryonic zebrafish spinal cord selectively reduces the excitatory synaptic transmission of the spinal network, monitored in vivo through patch clamp recordings, without affecting spinal cell survival. This effect is accompanied by a perturbation in the swimming activity of larvae, which is the locomotor behaviour generated by the neuronal network of the spinal cord. Such results indicate that the impact of s-GO on glutamate based neuronal transmission is preserved in vivo and can induce changes in animal behaviour. These findings pave the way for use of s-GO as a modulator of nervous system function.


Assuntos
Ácido Glutâmico/fisiologia , Grafite/farmacologia , Nanoestruturas/química , Medula Espinal/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Animais , Sobrevivência Celular/efeitos dos fármacos , Grafite/química , Locomoção/efeitos dos fármacos , Neurônios Motores/efeitos dos fármacos , Medula Espinal/fisiologia , Sinapses/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Peixe-Zebra
15.
Nanoscale ; 12(32): 16730-16737, 2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32785315

RESUMO

Understanding the biological fate of graphene-based materials such as graphene oxide (GO) is crucial to assess adverse effects following intentional or inadvertent exposure. Here we provide first evidence of biodegradation of GO in the gastrointestinal tract using zebrafish as a model. Raman mapping was deployed to assess biodegradation. The degradation was blocked upon knockdown of nos2a encoding the inducible nitric oxide synthase (iNOS) or by pharmacological inhibition of NOS using l-NAME, demonstrating that the process was nitric oxide (NO)-dependent. NO-dependent degradation of GO was further confirmed in vitro by combining a superoxide-generating system, xanthine/xanthine oxidase (X/XO), with an NO donor (PAPA NONOate), or by simultaneously producing superoxide and NO by decomposition of SIN-1. Finally, by using the transgenic strain Tg(mpx:eGFP) to visualize the movement of neutrophils, we could show that inhibition of the degradation of GO resulted in increased neutrophil infiltration into the gastrointestinal tract, indicative of inflammation.


Assuntos
Grafite , Óxido Nítrico , Animais , Trato Gastrointestinal/metabolismo , Inflamação , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Peixe-Zebra/metabolismo
16.
Theranostics ; 10(12): 5435-5488, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32373222

RESUMO

Cancer represents one of the main causes of death in the world; hence the development of more specific approaches for its diagnosis and treatment is urgently needed in clinical practice. Here we aim at providing a comprehensive review on the use of 2-dimensional materials (2DMs) in cancer theranostics. In particular, we focus on graphene-related materials (GRMs), graphene hybrids, and graphdiyne (GDY), as well as other emerging 2DMs, such as MXene, tungsten disulfide (WS2), molybdenum disulfide (MoS2), hexagonal boron nitride (h-BN), black phosphorus (BP), silicene, antimonene (AM), germanene, biotite (black mica), metal organic frameworks (MOFs), and others. The results reported in the scientific literature in the last ten years (>200 papers) are dissected here with respect to the wide variety of combinations of imaging methodologies and therapeutic approaches, including drug/gene delivery, photothermal/photodynamic therapy, sonodynamic therapy, and immunotherapy. We provide a unique multidisciplinary approach in discussing the literature, which also includes a detailed section on the characterization methods used to analyze the material properties, highlighting the merits and limitations of the different approaches. The aim of this review is to show the strong potential of 2DMs for use as cancer theranostics, as well as to highlight issues that prevent the clinical translation of these materials. Overall, we hope to shed light on the hidden potential of the vast panorama of new and emerging 2DMs as clinical cancer theranostics.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Grafite/química , Neoplasias/terapia , Fotoquimioterapia/métodos , Nanomedicina Teranóstica/métodos , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Propriedades de Superfície
17.
Nanoscale ; 12(23): 12383-12394, 2020 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-32490468

RESUMO

The outstanding properties of graphene offer high potential for biomedical applications. In this framework, positively charged nanomaterials show better interactions with the biological environment, hence there is strong interest in the production of positively charged graphene nanosheets. Currently, production of cationic graphene is either time consuming or producing dispersions with poor stability, which strongly limit their use in the biomedical field. In this study, we made a family of new cationic pyrenes, and have used them to successfully produce water-based, highly concentrated, stable, and defect-free graphene dispersions with positive charge. The use of different pyrene derivatives as well as molecular dynamics simulations allowed us to get insights on the nanoscale interactions required to achieve efficient exfoliation and stabilisation. The cationic graphene dispersions show outstanding biocompatibility and cellular uptake as well as exceptional colloidal stability in the biological medium, making this material extremely attractive for biomedical applications.


Assuntos
Grafite , Nanoestruturas , Água
18.
Nanoscale ; 11(29): 13863-13877, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31298676

RESUMO

The development of efficient and safe nucleic acid delivery vectors remains an unmet need holding back translation of gene therapy approaches to the bedside. Graphene oxide (GO) could help bypass such bottlenecks, thanks to its large surface area, versatile chemistry and biocompatibility, which could overall enhance transfection efficiency while abolishing some of the limitations linked to the use of viral vectors. Here, we aimed to assess the capacity of bare GO, without any further surface modification, to complex a short double-stranded nucleic acid of biological relevance (siRNA) and mediate its intracellular delivery. GO formed stable complexes with siRNA at 10 : 1, 20 : 1 and 50 : 1 GO : siRNA mass ratios. Complexation was further corroborated by atomistic molecular dynamics simulations. GO : siRNA complexes were promptly internalized in a primary mouse cell culture, as early as 4 h after exposure. At this time point, intracellular siRNA levels were comparable to those provided by a lipid-based transfection reagent that achieved significant gene silencing. The time-lapse tracking of internalized GO and siRNA evidenced a sharp decrease of intracellular siRNA from 4 to 12 h, while GO was sequestered in large vesicles, which may explain the lack of biological effects (i.e. gene silencing) achieved by GO : siRNA complexes. This study underlines the potential of non-surface modified GO flakes to act as 2D siRNA delivery platforms, without the need for cationic functionalization, but warrants further vector optimization to allow the effective release of the nucleic acid and achieve efficient gene silencing.


Assuntos
Grafite/química , RNA Interferente Pequeno/química , Transfecção/métodos , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Fibroblastos/citologia , Fibroblastos/metabolismo , Grafite/toxicidade , Camundongos , Microscopia Confocal , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Imagem com Lapso de Tempo
19.
Theranostics ; 9(24): 7298-7312, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31695769

RESUMO

The control of temperature during photothermal therapy is key to preventing unwanted damage in surrounding tissue or post-treatment inflammatory responses. Lack of accurate thermal control is indeed one of the main limitations that hyperthermia techniques present to allow their translation into therapeutic applications. We developed a nanoprobe that allows controlled local heating, combined with in situ nanothermometry. The design of the probe follows a practical rationale that aims at simplifying experimental requirements and exploits exclusively optical wavelengths matching the first and second biological windows in the near-infrared. Methods: Hybrid nanostructures were chemically synthesized, and combine gold nanostars (photothermal agents) with CaF2:Nd3+,Y3+ nanoparticles (luminescent nanothermometers). Both components were simultaneously excited in the near-infrared range, at 808 nm. Following the goal of simplifying the thermal monitoring technique, the luminescent signal was recorded with a portable near-infrared detector. The performance of the probes was tested in 3D tumor spheroids from a human glioblastoma (U87MG) cell line. The location of the beads within the spheroids was determined measuring Nd3+ emission in a commercial Lightsheet microscope, modified in-house to be able to select the required near-infrared wavelengths. The temperature achieved inside the tumor spheroids was deduced from the luminescence of Nd3+, following a protocol that we developed to provide reliable thermal readings. Results: The choice of materials was shown to work as an optically excited hybrid probe. Depending on the illumination parameters, temperature can be controlled in a range between 37 ºC and 100 ºC. The near-infrared emission of nanothermometers also allows microscopic tracking of the hybrid nanostructures, confirming that the probes can penetrate deeper into the spheroid mass. We observed that, application of optical thermometry in biological environments requires often neglected considerations, since the optical signal changes along the optical path. Accordingly, we developed data analysis protocols that guarantee reliable thermal readings. Conclusions: The prepared hybrid probes are internalized in 3D tumor spheroids and can be used to induce cell death through photothermal effects, while simultaneously measuring the local temperature in situ. We show that luminescent thermometry in biomedical applications requires the development of protocols that guarantee accurate readings. Regarding photothermal treatments, we observe a sharp thermal threshold at around 55 ºC (for 10 min treatments) that separates high survival ratio from complete cell death.


Assuntos
Fototerapia/métodos , Termometria/métodos , Linhagem Celular Tumoral , Ouro/química , Temperatura Alta , Humanos , Raios Infravermelhos , Nanoestruturas/química , Fototerapia/instrumentação , Esferoides Celulares/efeitos da radiação , Termometria/instrumentação
20.
Nanomedicine (Lond) ; 14(24): 3127-3142, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31855120

RESUMO

Aim: To develop a nonviral tool for the delivery of siRNA to brain tumor cells using peptide nanofibers (PNFs). Materials & methods: Uptake of PNFs was evaluated by confocal microscopy and flow cytometry. Gene silencing was determined by RT-qPCR and cell invasion assay. Results: PNFs enter phagocytic (BV-2) and nonphagocytic (U-87 MG) cells via endocytosis and passive translocation. siPLK1 delivered using PNFs reduced the expression of polo-like kinase 1 mRNA and induced cell death in a panel of immortalized and glioblastoma-derived stem cells. Moreover, targeting MMP2 using PNF:siMMP2 reduced the invasion capacity of U-87 MG cells. We show that stereotactic intra-tumoral administration of PNF:siPLK1 significantly extends the survival of tumor bearing mice comparing with the untreated tumor bearing animals. Conclusion: Our results suggest that this nanomedicine-based RNA interference approach deserves further investigation as a potential brain tumor therapeutic tool.


Assuntos
Neoplasias Encefálicas/terapia , Proteínas de Ciclo Celular/fisiologia , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Nanofibras/química , Peptídeos/química , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Animais , Neoplasias Encefálicas/metabolismo , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Citometria de Fluxo , Terapia Genética/métodos , Humanos , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/fisiologia , Camundongos , Camundongos Nus , Microscopia Confocal , Nanomedicina/métodos , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Quinase 1 Polo-Like
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA