Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Adv Mater ; 36(26): e2402070, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38616493

RESUMO

Future pulsed-power electronic systems based on dielectric capacitors require the use of environment-friendly materials with high energy-storage performance that can operate efficiently and reliably in harsh environments. Here, a study of multilayer structures, combining paraelectric-like Ba0.6Sr0.4TiO3 (BST) with relaxor-ferroelectric BaZr0.4Ti0.6O3 (BZT) layers on SrTiO3-buffered Si substrates, with the goal to optimize the high energy-storage performance is presented. The energy-storage properties of various stackings are investigated and an extremely large maximum recoverable energy storage density of ≈165.6 J cm-3 (energy efficiency ≈ 93%) is achieved for unipolar charging-discharging of a 25-nm-BZT/20-nm-BST/910-nm-BZT/20-nm-BST/25-nm-BZT multilayer structure, due to the extremely large breakdown field of 7.5 MV cm-1 and the lack of polarization saturation at high fields in this device. Strong indications are found that the breakdown field of the devices is determined by the outer layers of the multilayer stack and can be increased by improving the quality of these layers. Authors are also able to deduce design optimization rules for this material combination, which can be to a large extend justify by structural analysis. These rules are expected also to be useful for optimizing other multilayer systems and are therefore very relevant for further increasing the energy storage density of capacitors.

2.
Materials (Basel) ; 14(21)2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34771973

RESUMO

The dielectric properties, tunability and figure-of-merit (FOM) of relaxor Pb0.9La0.1(Zr0.52Ti0.48)O3 (PLZT) films have been investigated. Dielectric measurements indicated that the dielectric constant (at zero-bias field), tunability and FOM are enhanced as the film thickness increases, which are mainly attributed to the presence of an interfacial layer near the film-electrode interface. Experimental results illustrated that a slight reduction is observed in both dielectric constant and tunability (-2%) in a wide-frequency range (10 kHz-1 MHz); meanwhile, the FOM value decreases significantly (-17%) with increasing frequency, arising from the higher dielectric loss value. The 1000-nm PLZT film shows the largest tunability of 94.6% at a maximum electric-field of 1450 kV/cm, while the highest FOM factor is 37.6 at 1000 kV/cm, due to the combination of medium tunability (88.7%) and low dielectric loss (0.0236). All these excellent results indicated that the relaxor PLZT films are promising candidates for specific applications in microwave devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA