Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Cell Sci ; 129(6): 1115-27, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26823604

RESUMO

Altered nuclear size is associated with many cancers, and determining whether cancer-associated changes in nuclear size contribute to carcinogenesis necessitates an understanding of mechanisms of nuclear size regulation. Although nuclear import rates generally positively correlate with nuclear size, NTF2 levels negatively affect nuclear size, despite the role of NTF2 (also known as NUTF2) in nuclear recycling of the import factor Ran. We show that binding of Ran to NTF2 is required for NTF2 to inhibit nuclear expansion and import of large cargo molecules in Xenopus laevis egg and embryo extracts, consistent with our observation that NTF2 reduces the diameter of the nuclear pore complex (NPC) in a Ran-binding-dependent manner. Furthermore, we demonstrate that ectopic NTF2 expression in Xenopus embryos and mammalian tissue culture cells alters nuclear size. Finally, we show that increases in nuclear size during melanoma progression correlate with reduced NTF2 expression, and increasing NTF2 levels in melanoma cells is sufficient to reduce nuclear size. These results show a conserved capacity for NTF2 to impact on nuclear size, and we propose that NTF2 might be a new cancer biomarker.


Assuntos
Núcleo Celular/química , Núcleo Celular/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Proteínas da Gravidez/metabolismo , Proteína ran de Ligação ao GTP/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Núcleo Celular/genética , Tamanho do Núcleo Celular , Humanos , Proteínas de Transporte Nucleocitoplasmático/genética , Proteínas da Gravidez/genética , Ligação Proteica , Xenopus laevis , Proteína ran de Ligação ao GTP/genética
2.
Sci Rep ; 11(1): 23586, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34880267

RESUMO

While changes in nuclear structure and organization are frequently observed in cancer cells, relatively little is known about how nuclear architecture impacts cancer progression and pathology. To begin to address this question, we studied Nuclear Transport Factor 2 (NTF2) because its levels decrease during melanoma progression. We show that increasing NTF2 expression in WM983B metastatic melanoma cells reduces cell proliferation and motility while increasing apoptosis. We also demonstrate that increasing NTF2 expression in these cells significantly inhibits metastasis and prolongs survival of mice. NTF2 levels affect the expression and nuclear positioning of a number of genes associated with cell proliferation and migration, and increasing NTF2 expression leads to changes in nuclear size, nuclear lamin A levels, and chromatin organization. Thus, ectopic expression of NTF2 in WM983B metastatic melanoma abrogates phenotypes associated with advanced stage cancer both in vitro and in vivo, concomitantly altering nuclear and chromatin structure and generating a gene expression profile with characteristics of primary melanoma. We propose that NTF2 is a melanoma tumor suppressor and could be a novel therapeutic target to improve health outcomes of melanoma patients.


Assuntos
Movimento Celular/genética , Expressão Gênica/genética , Melanoma/genética , Proteínas de Transporte Nucleocitoplasmático/genética , Proteínas da Gravidez/genética , Animais , Linhagem Celular Tumoral , Núcleo Celular/genética , Proliferação de Células/genética , Cromatina/genética , Feminino , Humanos , Melanoma/patologia , Camundongos , Camundongos Knockout , Processos Neoplásicos
3.
Int Rev Cell Mol Biol ; 322: 1-59, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26940517

RESUMO

Nuclear size is generally maintained within a defined range in a given cell type. Changes in cell size that occur during cell growth, development, and differentiation are accompanied by dynamic nuclear size adjustments in order to establish appropriate nuclear-to-cytoplasmic volume relationships. It has long been recognized that aberrations in nuclear size are associated with certain disease states, most notably cancer. Nuclear size and morphology must impact nuclear and cellular functions. Understanding these functional implications requires an understanding of the mechanisms that control nuclear size. In this review, we first provide a general overview of the diverse cellular structures and activities that contribute to nuclear size control, including structural components of the nucleus, effects of DNA amount and chromatin compaction, signaling, and transport pathways that impinge on the nucleus, extranuclear structures, and cell cycle state. We then detail some of the key mechanistic findings about nuclear size regulation that have been gleaned from a variety of model organisms. Lastly, we review studies that have implicated nuclear size in the regulation of cell and nuclear function and speculate on the potential functional significance of nuclear size in chromatin organization, gene expression, nuclear mechanics, and disease. With many fundamental cell biological questions remaining to be answered, the field of nuclear size regulation is still wide open.


Assuntos
Ciclo Celular , Núcleo Celular/metabolismo , Cromatina/metabolismo , Regulação da Expressão Gênica , Tamanho das Organelas , Transdução de Sinais , Transporte Ativo do Núcleo Celular , Animais , Citoplasma/metabolismo , Humanos
4.
Curr Opin Cell Biol ; 28: 16-27, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24503411

RESUMO

The size and shape of the nucleus are tightly regulated, indicating the physiological significance of proper nuclear morphology, yet the mechanisms and functions of nuclear size and shape regulation remain poorly understood. Correlations between altered nuclear morphology and certain disease states have long been observed, most notably many cancers are diagnosed and staged based on graded increases in nuclear size. Here we review recent studies investigating the mechanisms regulating nuclear size and shape, how mitotic events influence nuclear morphology, and the role of nuclear size and shape in subnuclear chromatin organization and cancer progression.


Assuntos
Núcleo Celular , Animais , Ciclo Celular , Cromatina/genética , Expressão Gênica , Humanos , Neoplasias/genética , Neoplasias/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA