Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de estudo
Tipo de documento
Intervalo de ano de publicação
1.
Brain Behav Immun ; 115: 458-469, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37924959

RESUMO

The gut microbiome consists of trillions of bacteria, fungi, and viruses that inhabit the digestive tract. These communities are sensitive to disruption from environmental exposures ranging from diet changes to illness. Disruption of the community of lactic acid producing bacteria, Lactobaccillacea, has been well documented in mood disorders and stress exposure. In fact, oral supplement with many Lactobacillus species can ameliorate these effects, preventing depression- and anxiety-like behavior. Here, we utilize a gnotobiotic mouse colonized with the Altered Schaedler Flora to remove the two native species of Lactobaccillacea: L. intestinalis and L. murinus. Using this microbial community, we found that the Lactobacillus species themselves, and not the disrupted microbial communities are protective from environmental stressors. Further, we determine that Lactobaccillacea are maintaining homeostatic IFNγ levels which are mediating these behavioral and circuit level responses. By utilizing the Altered Schaedler Flora, we have gained new insight into how probiotics influence behavior and provide novel methods to study potential therapies to treat mood disorders.


Assuntos
Microbioma Gastrointestinal , Lactobacillus , Probióticos , Resiliência Psicológica , Animais , Camundongos , Trato Gastrointestinal/microbiologia , Homeostase , Probióticos/farmacologia
2.
Int J Mol Sci ; 22(15)2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34360537

RESUMO

Human tyrosinase (Tyr) is a glycoenzyme that catalyzes the first and rate-limiting step in melanin production, and its gene (TYR) is mutated in many cases of oculocutaneous albinism type 1 (OCA1). The mechanisms by which individual mutations contribute to the diverse pigmentation phenotype in patients with OCA1 have only began to be examined and remain to be delineated. Here, we analyze the temperature-dependent kinetics of wild-type Tyr (WT) and two OCA1B mutant variants (R422Q and P406L) using Michaelis-Menten and Van't Hoff analyses. Recombinant truncated human Tyr proteins (residues 19-469) were produced in the whole insect Trichoplusia Ni larvae. Proteins were purified by a combination of affinity and size-exclusion chromatography. The temperature dependence of diphenol oxidase protein activities and kinetic parameters were measured by dopachrome absorption. Using the same experimental conditions, computational simulations were performed to assess the temperature-dependent association of L-DOPA and Tyr. Our results revealed, for the first time, that the association of L-DOPA with R422Q and P406L followed by dopachrome formation is a complex reaction supported by enthalpy and entropy forces. We show that the WT has a higher turnover number as compared with both R422Q and P406L. Elucidating the kinetics and thermodynamics of mutant variants of Tyr in OCA1B helps to understand the mechanisms by which they lower Tyr catalytic activity and to discover novel therapies for patients.


Assuntos
Albinismo Oculocutâneo/patologia , Monofenol Mono-Oxigenase/metabolismo , Mutação , Fenótipo , Temperatura , Albinismo Oculocutâneo/enzimologia , Albinismo Oculocutâneo/etiologia , Catálise , Humanos , Cinética , Monofenol Mono-Oxigenase/genética
3.
bioRxiv ; 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37214985

RESUMO

The gut microbiome consists of the trillions of bacteria, fungi, and viruses that inhabit the digestive tract. These communities are sensitive to disruption from environmental exposures ranging from diet changes to illness. Disruption of the community of lactic acid producing bacteria, Lactobaccillacea , has been well documented in mood disorders and stress exposure. In fact, oral supplement with many Lactobacillus species can ameliorate these effects, preventing depression- and anxiety-like behavior. Here, for the first time, we utilize a gnotobiotic mouse colonized with the Altered Schaedler Flora to remove the two native species of Lactobaccillacea . Using this novel microbial community, we found that the Lactobacillus species themselves, and not the disrupted microbial communities are protective from environmental stressors. Further, we determine that Lactobaccillacea are maintaining homeostatic IFNγ levels which are mediating these behavioral and circuit level responses. By utilizing the Altered Schaedler Flora, we have gained new insight into how probiotics influence behavior and give novel methods to study potential therapies developed to treat mood disorders.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA