Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Arch Phys Med Rehabil ; 104(1): 119-131, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35750207

RESUMO

OBJECTIVE: To examine the efficacy, dosing, and safety profiles of intrathecal and oral baclofen in treating spasticity after spinal cord injury (SCI). DATA SOURCES: PubMed and Cochrane Databases were searched from 1970-2018 with keywords baclofen, spinal cord injury, and efficacy. STUDY SELECTION: The database search yielded 588 sources and 10 additional relevant publications. After removal of duplicates, 398 publications were screened. DATA EXTRACTION: Data were extracted using the following population, intervention, comparator, outcomes, and study designs criteria: studies including adult patients with SCI with spasticity; the intervention could be oral or intrathecal administration of baclofen; selection was inclusive for control groups, surgical management, rehabilitation, and alternative pharmaceutical agents; outcomes were efficacy, dosing, and adverse events. Randomized controlled trials, observational studies, and case reports were included. Meta-analyses and systematic reviews were excluded. DATA SYNTHESIS: A total of 98 studies were included with 1943 patients. Only 4 randomized, double-blinded, and placebo-controlled trials were reported. Thirty-nine studies examined changes in the Modified Ashworth Scale (MAS; 34 studies) and Penn Spasm scores (Penn Spasm Frequency; 19 studies), with average reductions of 1.7±1.3 and 1.6±1.4 in individuals with SCI, respectively. Of these data, a total of 6 of the 34 studies (MAS) and 2 of the 19 studies (Penn Spasm Frequency) analyzed oral baclofen. Forty-three studies addressed adverse events with muscle weakness and fatigue frequently reported. CONCLUSIONS: Baclofen is the most commonly-prescribed antispasmodic after SCI. Surprisingly, there remains a significant lack of large, placebo-controlled, double-blinded clinical trials, with most efficacy data arising from small studies examining treatment across different etiologies. In the studies reviewed, baclofen effectively improved spasticity outcome measures, with increased efficacy through intrathecal administration. Few studies assessed how reduced neural excitability affected residual motor function and activities of daily living. A host of adverse events were reported that may negatively affect quality of life. Comparative randomized controlled trials of baclofen and alternative treatments are warranted because these have demonstrated promise in relieving spasticity with reduced adverse events and without negatively affecting residual motor function.


Assuntos
Relaxantes Musculares Centrais , Traumatismos da Medula Espinal , Humanos , Adulto , Baclofeno , Relaxantes Musculares Centrais/efeitos adversos , Atividades Cotidianas , Qualidade de Vida , Injeções Espinhais/efeitos adversos , Espasticidade Muscular/tratamento farmacológico , Espasticidade Muscular/etiologia , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/tratamento farmacológico , Espasmo/induzido quimicamente , Espasmo/complicações , Espasmo/tratamento farmacológico
2.
J Clin Med ; 12(21)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37959340

RESUMO

Motor recovery following a complete spinal cord injury is not likely. This is partially due to insurance limitations. Rehabilitation strategies for individuals with this type of severe injury focus on the compensation for the activities of daily living in the home and community and not on the restoration of function. With limited time in therapies, the initial goals must focus on getting the patient home safely without the expectation of recovery of voluntary movement below the level of injury. In this study, we report a case of an individual with a chronic, cervical (C3)-level clinically motor- and sensory-complete injury who was able to perform voluntary movements with both upper and lower extremities when positioned in a sensory-rich environment conducive to the specific motor task. We show how he is able to intentionally perform push-ups, trunk extensions and leg presses only when appropriate sensory information is available to the spinal circuitry. These data show that the human spinal circuitry, even in the absence of clinically detectable supraspinal input, can generate motor patterns effective for the execution of various upper and lower extremity tasks, only when appropriate sensory information is present. Neurorehabilitation in the right sensory-motor environment that can promote partial recovery of voluntary movements below the level of injury, even in individuals diagnosed with a clinically motor-complete spinal cord injury.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA