RESUMO
Given the multitude of extracellular enzymes at their disposal, many of which are designed to degrade nature's polymers (lignin, cutin, cellulose, etc.), fungi are adept at targeting synthetic polyesters with similar chemical composition. Microbial-influenced deterioration of xenobiotic polymeric surfaces is an area of interest for material scientists as these are important for the conservation of the underlying structural materials. Here, we describe the isolation and characterization of the Papiliotrema laurentii 5307AH (P. laurentii) cutinase, Plcut1. P. laurentii is basidiomycete yeast with the ability to disperse Impranil-DLN (Impranil), a colloidal polyester polyurethane, in agar plates. To test whether the fungal factor involved in this clearing was a secreted enzyme, we screened the ability of P. laurentii culture supernatants to disperse Impranil. Using size exclusion chromatography (SEC), we isolated fractions that contained Impranil-clearing activity. These fractions harbored a single ~22 kD band, which was excised and subjected to peptide sequencing. Homology searches using the peptide sequences identified, revealed that the protein Papla1 543643 (Plcut1) displays similarities to serine esterase and cutinase family of proteins. Biochemical assays using recombinant Plcut1 confirmed that this enzyme has the capability to hydrolyze Impranil, soluble esterase substrates, and apple cutin. Finally, we confirmed the presence of the Plcut1 in culture supernatants using a custom antibody that specifically recognizes this protein. The work shown here supports a major role for the Plcut1 in the fungal degradation of natural polyesters and xenobiotic polymer surfaces.IMPORTANCEFungi play a vital role in the execution of a broad range of biological processes that drive ecosystem function through production of a diverse arsenal of enzymes. However, the universal reactivity of these enzymes is a current problem for the built environment and the undesired degradation of polymeric materials in protective coatings. Here, we report the identification and characterization of a hydrolase from Papiliotrema laurentii 5307AH, an aircraft-derived fungal isolate found colonizing a biodeteriorated polymer-coated surface. We show that P. laurentii secretes a cutinase capable of hydrolyzing soluble esters as well as ester-based compounds forming solid surface coatings. These findings indicate that this fungus plays a significant role in biodeterioration through the production of a cutinase adept at degrading ester-based polymers, some of which form the backbone of protective surface coatings. The work shown here provides insights into the mechanisms employed by fungi to degrade xenobiotic polymers.
Assuntos
Hidrolases de Éster Carboxílico , Proteínas Fúngicas , Poliésteres , Proteínas Recombinantes , Hidrolases de Éster Carboxílico/metabolismo , Hidrolases de Éster Carboxílico/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Poliésteres/metabolismo , HidróliseRESUMO
The oxidative phosphorylation (OxPhos) pathway is responsible for most aerobic ATP production and is the only pathway with both nuclear and mitochondrial encoded proteins. The importance of the interactions between these two genomes has recently received more attention because of their potential evolutionary effects and how they may affect human health and disease. In many different organisms, healthy nuclear and mitochondrial genome hybrids between species or among distant populations within a species affect fitness and OxPhos functions. However, what is less understood is whether these interactions impact individuals within a single natural population. The significance of this impact depends on the strength of selection for mito-nuclear interactions. We examined whether mito-nuclear interactions alter allele frequencies for ~11,000 nuclear SNPs within a single, natural Fundulus heteroclitus population containing two divergent mitochondrial haplotypes (mt-haplotypes). Between the two mt-haplotypes, there are significant nuclear allele frequency differences for 349 SNPs with a p-value of 1% (236 with 10% FDR). Unlike the rest of the genome, these 349 outlier SNPs form two groups associated with each mt-haplotype, with a minority of individuals having mixed ancestry. We use this mixed ancestry in combination with mt-haplotype as a polygenic factor to explain a significant fraction of the individual OxPhos variation. These data suggest that mito-nuclear interactions affect cardiac OxPhos function. The 349 outlier SNPs occur in genes involved in regulating metabolic processes but are not directly associated with the 79 nuclear OxPhos proteins. Therefore, we postulate that the evolution of mito-nuclear interactions affects OxPhos function by acting upstream of OxPhos.
Assuntos
Núcleo Celular/genética , Evolução Molecular , Fundulidae/genética , Mitocôndrias/genética , Transporte Ativo do Núcleo Celular/genética , Animais , Núcleo Celular/metabolismo , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Fundulidae/metabolismo , Frequência do Gene , Genética Populacional , Genótipo , Haplótipos , Desequilíbrio de Ligação , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosforilação Oxidativa , Fenótipo , Polimorfismo de Nucleotídeo ÚnicoRESUMO
BACKGROUND: Examples of rapid evolution are common in nature but difficult to account for with the standard population genetic model of adaptation. Instead, selection from the standing genetic variation permits rapid adaptation via soft sweeps or polygenic adaptation. Empirical evidence of this process in nature is currently limited but accumulating. RESULTS: We provide genome-wide analyses of rapid evolution in Fundulus heteroclitus populations subjected to recently elevated temperatures due to coastal power station thermal effluents using 5449 SNPs across two effluent-affected and four reference populations. Bayesian and multivariate analyses of population genomic structure reveal a substantial portion of genetic variation that is most parsimoniously explained by selection at the site of thermal effluents. An FST outlier approach in conjunction with additional conservative requirements identify significant allele frequency differentiation that exceeds neutral expectations among exposed and closely related reference populations. Genomic variation patterns near these candidate loci reveal that individuals living near thermal effluents have rapidly evolved from the standing genetic variation through small allele frequency changes at many loci in a pattern consistent with polygenic selection on the standing genetic variation. CONCLUSIONS: While the ultimate trajectory of selection in these populations is unknown and we survey only a minority of genomic loci, our findings suggest that polygenic models of adaptation may play important roles in large, natural populations experiencing recent selection due to environmental changes that cause broad physiological impacts.
Assuntos
Aclimatação/genética , Adaptação Fisiológica/genética , Fundulidae/genética , Animais , Teorema de Bayes , Fundulidae/fisiologia , Frequência do Gene , Genética Populacional , Estudo de Associação Genômica Ampla , Genômica , Temperatura Alta , Metagenômica , Herança Multifatorial , Polimorfismo de Nucleotídeo Único , Seleção GenéticaRESUMO
The Ascomycota yeast Aureobasidium melanogenum strain W12 was isolated from an aircraft polymer-coated surface. The genome size is 53,160,883 bp with a G + C content of 50.13%. The genome contains fatty acid transporters, cutinases, hydroxylases, and lipases potentially used for survival on polymer coatings on aircraft.
RESUMO
The Basidiomycota yeast Naganishia albida strain 5307AI was isolated from an aircraft polymer-coated surface. The genome size is 20,642,279 bp, with a G+C content of 53.99%. The genome contains fatty acid transporters, cutinases, hydroxylases, and lipases that are likely used for survival on polymer coatings on aircraft.
RESUMO
Spatial cognition is used by most organisms to navigate their environment. Some species rely particularly heavily on specialized spatial cognition to survive, suggesting that a heritable component of cognition may be under natural selection. This idea remains largely untested outside of humans, perhaps because cognition in general is known to be strongly affected by learning and experience.1-4 We investigated the genetic basis of individual variation in spatial cognition used by non-migratory food-caching birds to recover food stores and survive harsh montane winters. Comparing the genomes of wild, free-living birds ranging from best to worst in their performance on a spatial cognitive task revealed significant associations with genes involved in neuron growth and development and hippocampal function. These results identify candidate genes associated with differences in spatial cognition and provide a critical link connecting individual variation in spatial cognition with natural selection. VIDEO ABSTRACT.
Assuntos
Cognição , Comportamento Alimentar , Aves Canoras , Animais , Alimentos , Hipocampo/fisiologia , Aves Canoras/genéticaRESUMO
Selection on standing genetic variation may be effective enough to allow for adaptation to distinct niche environments within a single generation. Minor allele frequency changes at multiple, redundant loci of small effect can produce remarkable phenotypic shifts. Yet, demonstrating rapid adaptation via polygenic selection in the wild remains challenging. Here we harness natural replicate populations that experience similar selection pressures and harbor high within-, yet negligible among-population genetic variation. Such populations can be found among the teleost Fundulus heteroclitus that inhabits marine estuaries characterized by high environmental heterogeneity. We identify 10,861 single nucleotide polymorphisms in F. heteroclitus that belong to a single, panmictic population yet reside in environmentally distinct niches (one coastal basin and three replicate tidal ponds). By sampling at two time points within a single generation, we quantify both allele frequency change within as well as spatial divergence among niche subpopulations. We observe few individually significant allele frequency changes yet find that the "number" of moderate changes exceeds the neutral expectation by 10-100%. We find allele frequency changes to be significantly concordant in both direction and magnitude among all niche subpopulations, suggestive of parallel selection. In addition, within-generation allele frequency changes generate subtle but significant divergence among niches, indicative of local adaptation. Although we cannot distinguish between selection and genotype-dependent migration as drivers of within-generation allele frequency changes, the trait/s determining fitness and/or migration likelihood appear to be polygenic. In heterogeneous environments, polygenic selection and polygenic, genotype-dependent migration offer conceivable mechanisms for within-generation, local adaptation to distinct niches.
Assuntos
Ecossistema , Fundulidae/genética , Herança Multifatorial , Animais , Frequência do Gene , Fenótipo , Polimorfismo de Nucleotídeo Único , Seleção GenéticaRESUMO
The study of hybrid zones can provide insight into the genetic basis of species differences that are relevant for the maintenance of reproductive isolation. Hybrid zones can also provide insight into climate change, species distributions, and evolution. The hybrid zone between black-capped chickadees (Poecile atricapillus) and Carolina chickadees (Poecile carolinensis) is shifting northward in response to increasing winter temperatures but is not increasing in width. This pattern indicates strong selection against chickadees with admixed genomes. Using high-resolution genomic data, we identified regions of the genomes that are outliers in both time points and do not introgress between the species; these regions may be involved in the maintenance of reproductive isolation. Genes involved in metabolic regulation processes were overrepresented in this dataset. Several gene ontology categories were also temporally consistent-including glutamate signaling, synaptic transmission, and catabolic processes-but the nucleotide variants leading to this pattern were not. Our results support recent findings that hybrids between black-capped and Carolina chickadees have higher basal metabolic rates than either parental species and suffer spatial memory and problem-solving deficits. Metabolic breakdown, as well as spatial memory and problem-solving, in hybrid chickadees may act as strong postzygotic isolation mechanisms in this moving hybrid zone.
Assuntos
Hibridização Genética , Isolamento Reprodutivo , Seleção Genética , Aves Canoras/genética , Distribuição Animal , Animais , Genoma , Metabolismo/genética , Aves Canoras/metabolismo , Transmissão Sináptica/genéticaRESUMO
Animal condition typically reflects the accumulation of energy stores (e.g. fatty acids), which can influence an individual's decision to undertake challenging life-history events, such as migration and reproduction. Accordingly, researchers often use measures of animal body size and/or weight as an index of condition. However, values of condition, such as fatty acid levels, may not always reflect the physiological state of animals accurately. While the relationships between condition indices and energy stores have been explored in some species (e.g. birds), they have yet to be examined in top predatory fishes, which often undertake extensive and energetically expensive migrations. We used an apex predatory shark (Galeocerdo cuvier, the tiger shark) as a model species to evaluate the relationship between triglycerides (energy metabolite) and a metric of overall body condition. We captured, blood sampled, measured and released 28 sharks (size range 125-303â cm pre-caudal length). In the laboratory, we assayed each plasma sample for triglyceride values. We detected a positive and significant relationship between condition and triglyceride values (Pâ <â 0.02). This result may have conservation implications if the largest and highest-condition sharks are exploited in fisheries, because these individuals are likely to have the highest potential for successful reproduction. Our results suggest that researchers may use either plasma triglyceride values or an appropriate measure of body condition for assessing health in large sharks.
RESUMO
Physiological mechanisms underlying migration remain poorly understood, but recent attention has focused on the role of the glucocorticoid hormone corticosterone (CORT) as a key endocrine regulator of migration. The migration-modulation hypothesis (MMH) proposes that baseline plasma CORT levels are elevated in migratory birds to facilitate hyperphagia and lipogenesis and that further elevation of CORT in response to acute stress is suppressed. Consequently, CORT may be a poor indicator of individual condition or environmental variation in migratory birds. We tested the MMH by measuring baseline and stress-induced CORT in common yellowthroats (Geothlypis trichas) during fall migration over 2 consecutive years in the Revelstoke Reach drawdown zone, a migratory stopover site affected by local hydroelectric operations. Birds had low baseline CORT at initial capture (<5 ng/mL) and then showed a robust stress response, with CORT increasing to ca. 50 ng/mL within 10-20 min. Our data therefore do not support the MMH. Baseline CORT did not vary with body mass, time of capture, Julian day, or year, suggesting that variable flooding regimes did not affect baseline CORT. Individual variation in the rate of increase in CORT was correlated with Julian day, being higher later in the migration period. Our data suggest that plasma CORT can be a useful metric in migration studies.
Assuntos
Migração Animal , Corticosterona/sangue , Aves Canoras/fisiologia , Animais , Peso Corporal , Colúmbia Britânica , Meio Ambiente , Feminino , Longevidade , Masculino , Estações do Ano , Caracteres SexuaisRESUMO
Temperate and tropical birds possess divergent life history strategies. Physiological parameters including energy metabolism correlate with the life history such that tropical species with a slower 'pace of life' have lower resting and maximal metabolic rates than temperate congeners. To better understand the physiological mechanisms underlying these differences, we investigated the relationship of metabolic capacity, muscle oxidative capacity and activity patterns to variation in life history patterns in American robins (Turdus migratorius), while resident in central North America and Clay-colored robins (Turdus grayi) resident in Panama. We measured summit metabolism [Formula: see text] in birds from both tropical and temperate habitats and found that the temperate robins have a 60 % higher metabolic capacity. We also measured the field metabolic rate (FMR) of free-living birds using heart rate (HR) telemetry and found that temperate robins' daily energy expenditure was also 60 % higher. Thus, [Formula: see text] and FMR both reflect life history differences between the species. Further, both species operate at a nearly identical ~50 % of their thermogenic capacity throughout a given day. As a potential mechanism to explain differences in activity and metabolic capacity, we ask whether oxidative properties of flight muscle are altered in accordance with life history variation and found minimal differences in oxidative capacity of skeletal muscle. These data demonstrate a close relationship between thermogenic capacity and daily activity in free-living birds. Further, they suggest that the slow pace of life in tropical birds may be related to the maintenance of low activity rather than functional capacity of the muscle tissue.