Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(25): e2219137121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38861593

RESUMO

Cortical arealization arises during neurodevelopment from the confluence of molecular gradients representing patterned expression of morphogens and transcription factors. However, whether similar gradients are maintained in the adult brain remains unknown. Here, we uncover three axes of topographic variation in gene expression in the adult human brain that specifically capture previously identified rostral-caudal, dorsal-ventral, and medial-lateral axes of early developmental patterning. The interaction of these spatiomolecular gradients i) accurately reconstructs the position of brain tissue samples, ii) delineates known functional territories, and iii) can model the topographical variation of diverse cortical features. The spatiomolecular gradients are distinct from canonical cortical axes differentiating the primary sensory cortex from the association cortex, but radiate in parallel with the axes traversed by local field potentials along the cortex. We replicate all three molecular gradients in three independent human datasets as well as two nonhuman primate datasets and find that each gradient shows a distinct developmental trajectory across the lifespan. The gradients are composed of several well-known transcription factors (e.g., PAX6 and SIX3), and a small set of genes shared across gradients are strongly enriched for multiple diseases. Together, these results provide insight into the developmental sculpting of functionally distinct brain regions, governed by three robust transcriptomic axes embedded within brain parenchyma.


Assuntos
Encéfalo , Humanos , Encéfalo/metabolismo , Animais , Adulto , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Fator de Transcrição PAX6/metabolismo , Fator de Transcrição PAX6/genética , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Padronização Corporal/genética , Feminino , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética
2.
PLoS Biol ; 21(11): e3002365, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37943873

RESUMO

The human isocortex consists of tangentially organized layers with unique cytoarchitectural properties. These layers show spatial variations in thickness and cytoarchitecture across the neocortex, which is thought to support function through enabling targeted corticocortical connections. Here, leveraging maps of the 6 cortical layers based on 3D human brain histology, we aimed to quantitatively characterize the systematic covariation of laminar structure in the cortex and its functional consequences. After correcting for the effect of cortical curvature, we identified a spatial pattern of changes in laminar thickness covariance from lateral frontal to posterior occipital regions, which differentiated the dominance of infra- versus supragranular layer thickness. Corresponding to the laminar regularities of cortical connections along cortical hierarchy, the infragranular-dominant pattern of laminar thickness was associated with higher hierarchical positions of regions, mapped based on resting-state effective connectivity in humans and tract-tracing of structural connections in macaques. Moreover, we show that regions with similar laminar thickness patterns have a higher likelihood of structural connections and strength of functional connections. In sum, here we characterize the organization of laminar thickness in the human isocortex and its association with cortico-cortical connectivity, illustrating how laminar organization may provide a foundational principle of cortical function.


Assuntos
Neocórtex , Animais , Humanos , Macaca , Córtex Cerebral
3.
Brain ; 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643018

RESUMO

Neuropsychological impairments are common in children with drug-resistant epilepsy. It has been proposed that epilepsy surgery may alleviate these impairments by providing seizure freedom; however, findings from prior studies have been inconsistent. We mapped long-term neuropsychological trajectories in children before and after undergoing epilepsy surgery, to measure the impact of disease course and surgery on functioning. We performed a retrospective cohort study of 882 children who had undergone epilepsy surgery at Great Ormond Street Hospital (1990-2018). We extracted patient information and neuropsychological functioning - obtained from IQ tests (domains: Full-Scale IQ, Verbal IQ, Performance IQ, Working Memory, and Processing Speed) and tests of academic attainment (Reading, Spelling and Numeracy) - and investigated changes in functioning using regression analyses. We identified 500 children (248 females) who had undergone epilepsy surgery (median age at surgery = 11.9 years, interquartile range = [7.8,15.0]) and neuropsychology assessment. These children showed declines in all domains of neuropsychological functioning in the time leading up to surgery (all p-values ≤ 0.001; e.g., ßFSIQ = -1.9, SEFSIQ = 0.3, pFSIQ < 0.001). Children lost on average one to four points per year, depending on the domain considered; 27-43% declined by 10 or more points from their first to their last preoperative assessment. At the time of presurgical evaluation, most children (46-60%) scored one or more standard deviations below the mean (<85) on the different neuropsychological domains; 37% of these met the threshold for intellectual disability (Full-Scale IQ < 70). On a group level, there was no change in performance from pre- to postoperative assessment on any of the domains (all p-values > 0.128). However, children who became seizure-free through surgery showed higher postoperative neuropsychological performance (e.g., rrb-FSIQ = 0.37, p < 0.001). These children continued to demonstrate improvements in neuropsychological functioning over the course of their long-term follow-up (e.g., ßFSIQ = 0.9, SEFSIQ = 0.3, pFSIQ = 0.004). Children who had discontinued antiseizure medication (ASM) treatment at one-year follow-up showed an eight-to-13-point advantage in postoperative Working Memory, Processing Speed, and Numeracy, and greater improvements in Verbal IQ, Working Memory, Reading, and Spelling (all p-values < 0.034) over the postoperative period compared to children who were seizure-free and still receiving ASMs. In conclusion, by providing seizure freedom and the opportunity for ASM cessation, epilepsy surgery may not only halt but reverse the downward trajectory that children with drug-resistant epilepsy display in neuropsychological functioning. To halt this decline as soon as possible, or potentially prevent it from occurring in the first place, children with focal epilepsy should be considered for epilepsy surgery as early as possible after diagnosis.

4.
Epilepsia ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38829313

RESUMO

Epilepsy's myriad causes and clinical presentations ensure that accurate diagnoses and targeted treatments remain a challenge. Advanced neurotechnologies are needed to better characterize individual patients across multiple modalities and analytical techniques. At the XVIth Workshop on Neurobiology of Epilepsy: Early Onset Epilepsies: Neurobiology and Novel Therapeutic Strategies (WONOEP 2022), the session on "advanced tools" highlighted a range of approaches, from molecular phenotyping of genetic epilepsy models and resected tissue samples to imaging-guided localization of epileptogenic tissue for surgical resection of focal malformations. These tools integrate cutting edge research, clinical data acquisition, and advanced computational methods to leverage the rich information contained within increasingly large datasets. A number of common challenges and opportunities emerged, including the need for multidisciplinary collaboration, multimodal integration, potential ethical challenges, and the multistage path to clinical translation. Despite these challenges, advanced epilepsy neurotechnologies offer the potential to improve our understanding of the underlying causes of epilepsy and our capacity to provide patient-specific treatment.

5.
Dev Med Child Neurol ; 66(2): 216-225, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37559345

RESUMO

AIM: To evaluate a lesion detection algorithm designed to detect focal cortical dysplasia (FCD) in children undergoing stereoelectroencephalography (SEEG) as part of their presurgical evaluation for drug-resistant epilepsy. METHOD: This was a prospective, single-arm, interventional study (Idea, Development, Exploration, Assessment, and Long-Term Follow-Up phase 1/2a). After routine SEEG planning, structural magnetic resonance imaging sequences were run through an FCD lesion detection algorithm to identify putative clusters. If the top three clusters were not already sampled, up to three additional SEEG electrodes were added. The primary outcome measure was the proportion of patients who had additional electrode contacts in the SEEG-defined seizure-onset zone (SOZ). RESULTS: Twenty patients (median age 12 years, range 4-18 years) were enrolled, one of whom did not undergo SEEG. Additional electrode contacts were part of the SOZ in 1 out of 19 patients while 3 out of 19 patients had clusters that were part of the SOZ but they were already implanted. A total of 16 additional electrodes were implanted in nine patients and there were no adverse events from the additional electrodes. INTERPRETATION: We demonstrate early-stage prospective clinical validation of a machine learning lesion detection algorithm used to aid the identification of the SOZ in children undergoing SEEG. We share key lessons learnt from this evaluation and emphasize the importance of robust prospective evaluation before routine clinical adoption of such algorithms. WHAT THIS PAPER ADDS: The focal cortical dysplasia detection algorithm collocated with the seizure-onset zone (SOZ) in 4 out of 19 patients. The algorithm changed the resection boundaries in 1 of 19 patients undergoing stereoelectroencephalography for drug-resistant epilepsy. The patient with an altered resection due to the algorithm was seizure-free 1 year after resective surgery. Overall, the algorithm did not increase the proportion of patients in whom SOZ was identified.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia , Displasia Cortical Focal , Criança , Humanos , Pré-Escolar , Adolescente , Eletroencefalografia/métodos , Estudos Retrospectivos , Epilepsia/diagnóstico , Epilepsia/cirurgia , Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Epilepsia Resistente a Medicamentos/cirurgia , Convulsões
6.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33452137

RESUMO

Transmitter receptors constitute a key component of the molecular machinery for intercellular communication in the brain. Recent efforts have mapped the density of diverse transmitter receptors across the human cerebral cortex with an unprecedented level of detail. Here, we distill these observations into key organizational principles. We demonstrate that receptor densities form a natural axis in the human cerebral cortex, reflecting decreases in differentiation at the level of laminar organization and a sensory-to-association axis at the functional level. Along this natural axis, key organizational principles are discerned: progressive molecular diversity (increase of the diversity of receptor density); excitation/inhibition (increase of the ratio of excitatory-to-inhibitory receptor density); and mirrored, orderly changes of the density of ionotropic and metabotropic receptors. The uncovered natural axis formed by the distribution of receptors aligns with the axis that is formed by other dimensions of cortical organization, such as the myelo- and cytoarchitectonic levels. Therefore, the uncovered natural axis constitutes a unifying organizational feature linking multiple dimensions of the cerebral cortex, thus bringing order to the heterogeneity of cortical organization.


Assuntos
Encéfalo/metabolismo , Comunicação Celular/genética , Córtex Cerebral/metabolismo , Receptores de Neurotransmissores/genética , Autorradiografia , Encéfalo/diagnóstico por imagem , Encéfalo/ultraestrutura , Mapeamento Encefálico , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/ultraestrutura , Humanos , Receptores de AMPA/genética , Receptores de AMPA/isolamento & purificação , Receptores de GABA-A/genética , Receptores de GABA-A/isolamento & purificação , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/isolamento & purificação , Receptores de Neurotransmissores/química , Receptores de Neurotransmissores/classificação , Receptores de Neurotransmissores/ultraestrutura
7.
Ann Neurol ; 92(3): 503-511, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35726354

RESUMO

OBJECTIVE: The purpose of this study was to evaluate if focal cortical dysplasia (FCD) co-localization to cortical functional networks is associated with the temporal distribution of epilepsy onset in FCD. METHODS: International (20 center), retrospective cohort from the Multi-Centre Epilepsy Lesion Detection (MELD) project. Patients included if >3 years old, had 3D pre-operative T1 magnetic resonance imaging (MRI; 1.5 or 3 T) with radiologic or histopathologic FCD after surgery. Images processed using the MELD protocol, masked with 3D regions-of-interest (ROI), and co-registered to fsaverage_sym (symmetric template). FCDs were then co-localized to 1 of 7 distributed functional cortical networks. Negative binomial regression evaluated effect of FCD size, network, histology, and sulcal depth on age of epilepsy onset. From this model, predictive age of epilepsy onset was calculated for each network. RESULTS: Three hundred eighty-eight patients had median age seizure onset 5 years (interquartile range [IQR] = 3-11 years), median age at pre-operative scan 18 years (IQR = 11-28 years). FCDs co-localized to the following networks: limbic (90), default mode (87), somatomotor (65), front parietal control (52), ventral attention (32), dorsal attention (31), and visual (31). Larger lesions were associated with younger age of onset (p = 0.01); age of epilepsy onset was associated with dominant network (p = 0.04) but not sulcal depth or histology. Sensorimotor networks had youngest onset; the limbic network had oldest age of onset (p values <0.05). INTERPRETATION: FCD co-localization to distributed functional cortical networks is associated with age of epilepsy onset: sensory neural networks (somatomotor and visual) with earlier onset, and limbic latest onset. These variations may reflect developmental differences in synaptic/white matter maturation or network activation and may provide a biological basis for age-dependent epilepsy onset expression. ANN NEUROL 2022;92:503-511.


Assuntos
Epilepsia , Malformações do Desenvolvimento Cortical , Criança , Pré-Escolar , Epilepsia/complicações , Epilepsia/etiologia , Humanos , Imageamento por Ressonância Magnética/métodos , Malformações do Desenvolvimento Cortical/complicações , Malformações do Desenvolvimento Cortical/diagnóstico por imagem , Estudos Retrospectivos , Resultado do Tratamento
8.
Epilepsia ; 64(9): 2260-2273, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37264783

RESUMO

OBJECTIVE: Neurosurgery is a safe and effective form of treatment for select children with drug-resistant epilepsy. Still, there is concern that it remains underutilized, and that seizure freedom rates have not improved over time. We investigated referral and surgical practices, patient characteristics, and postoperative outcomes over the past two decades. METHODS: We performed a retrospective cohort study of children referred for epilepsy surgery at a tertiary center between 2000 and 2018. We extracted information from medical records and analyzed temporal trends using regression analyses. RESULTS: A total of 1443 children were evaluated for surgery. Of these, 859 (402 females) underwent surgical resection or disconnection at a median age of 8.5 years (interquartile range [IQR] = 4.6-13.4). Excluding palliative procedures, 67% of patients were seizure-free and 15% were on no antiseizure medication (ASM) at 1-year follow-up. There was an annual increase in the number of referrals (7%, 95% confidence interval [CI] = 5.3-8.6; p < .001) and surgeries (4% [95% CI = 2.9-5.6], p < .001) over time. Duration of epilepsy and total number of different ASMs trialed from epilepsy onset to surgery were, however, unchanged, and continued to exceed guidelines. Seizure freedom rates were also unchanged overall but showed improvement (odds ratio [OR] 1.09, 95% CI = 1.01-1.18; p = .027) after adjustment for an observed increase in complex cases. Children who underwent surgery more recently were more likely to be off ASMs postoperatively (OR 1.04, 95% CI = 1.01-1.08; p = .013). There was a 17% annual increase (95% CI = 8.4-28.4, p < .001) in children identified to have a genetic cause of epilepsy, which was associated with poor outcome. SIGNIFICANCE: Children with drug-resistant epilepsy continue to be put forward for surgery late, despite national and international guidelines urging prompt referral. Seizure freedom rates have improved over the past decades, but only after adjustment for a concurrent increase in complex cases. Finally, genetic testing in epilepsy surgery patients has expanded considerably over time and shows promise in identifying patients in whom surgery is less likely to be successful.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia , Criança , Feminino , Humanos , Estudos Retrospectivos , Resultado do Tratamento , Epilepsia/diagnóstico , Epilepsia/genética , Epilepsia/cirurgia , Epilepsia Resistente a Medicamentos/diagnóstico , Epilepsia Resistente a Medicamentos/genética , Epilepsia Resistente a Medicamentos/cirurgia , Testes Genéticos
9.
Epilepsia ; 64(5): 1093-1112, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36721976

RESUMO

Focal cortical dysplasias (FCDs) are malformations of cortical development and one of the most common pathologies causing pharmacoresistant focal epilepsy. Resective neurosurgery yields high success rates, especially if the full extent of the lesion is correctly identified and completely removed. The visual assessment of magnetic resonance imaging does not pinpoint the FCD in 30%-50% of cases, and half of all patients with FCD are not amenable to epilepsy surgery, partly because the FCD could not be sufficiently localized. Computational approaches to FCD detection are an active area of research, benefitting from advancements in computer vision. Automatic FCD detection is a significant challenge and one of the first clinical grounds where the application of artificial intelligence may translate into an advance for patients' health. The emergence of new methods from the combination of health and computer sciences creates novel challenges. Imaging data need to be organized into structured, well-annotated datasets and combined with other clinical information, such as histopathological subtypes or neuroimaging characteristics. Algorithmic output, that is, model prediction, requires a technically correct evaluation with adequate metrics that are understandable and usable for clinicians. Publication of code and data is necessary to make research accessible and reproducible. This critical review introduces the field of automatic FCD detection, explaining underlying medical and technical concepts, highlighting its challenges and current limitations, and providing a perspective for a novel research environment.


Assuntos
Epilepsia , Displasia Cortical Focal , Humanos , Inteligência Artificial , Epilepsia/diagnóstico por imagem , Epilepsia/cirurgia , Neuroimagem , Algoritmos
10.
Epilepsia ; 64(8): 2014-2026, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37129087

RESUMO

OBJECTIVE: The accurate prediction of seizure freedom after epilepsy surgery remains challenging. We investigated if (1) training more complex models, (2) recruiting larger sample sizes, or (3) using data-driven selection of clinical predictors would improve our ability to predict postoperative seizure outcome using clinical features. We also conducted the first substantial external validation of a machine learning model trained to predict postoperative seizure outcome. METHODS: We performed a retrospective cohort study of 797 children who had undergone resective or disconnective epilepsy surgery at a tertiary center. We extracted patient information from medical records and trained three models-a logistic regression, a multilayer perceptron, and an XGBoost model-to predict 1-year postoperative seizure outcome on our data set. We evaluated the performance of a recently published XGBoost model on the same patients. We further investigated the impact of sample size on model performance, using learning curve analysis to estimate performance at samples up to N = 2000. Finally, we examined the impact of predictor selection on model performance. RESULTS: Our logistic regression achieved an accuracy of 72% (95% confidence interval [CI] = 68%-75%, area under the curve [AUC] = .72), whereas our multilayer perceptron and XGBoost both achieved accuracies of 71% (95% CIMLP = 67%-74%, AUCMLP = .70; 95% CIXGBoost own = 68%-75%, AUCXGBoost own = .70). There was no significant difference in performance between our three models (all p > .4) and they all performed better than the external XGBoost, which achieved an accuracy of 63% (95% CI = 59%-67%, AUC = .62; pLR = .005, pMLP = .01, pXGBoost own = .01) on our data. All models showed improved performance with increasing sample size, but limited improvements beyond our current sample. The best model performance was achieved with data-driven feature selection. SIGNIFICANCE: We show that neither the deployment of complex machine learning models nor the assembly of thousands of patients alone is likely to generate significant improvements in our ability to predict postoperative seizure freedom. We instead propose that improved feature selection alongside collaboration, data standardization, and model sharing is required to advance the field.


Assuntos
Epilepsia , Criança , Humanos , Estudos Retrospectivos , Resultado do Tratamento , Epilepsia/diagnóstico , Epilepsia/cirurgia , Convulsões/diagnóstico , Convulsões/cirurgia , Aprendizado de Máquina
11.
PLoS Biol ; 18(4): e3000678, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32243449

RESUMO

Histological atlases of the cerebral cortex, such as those made famous by Brodmann and von Economo, are invaluable for understanding human brain microstructure and its relationship with functional organization in the brain. However, these existing atlases are limited to small numbers of manually annotated samples from a single cerebral hemisphere, measured from 2D histological sections. We present the first whole-brain quantitative 3D laminar atlas of the human cerebral cortex. It was derived from a 3D histological atlas of the human brain at 20-micrometer isotropic resolution (BigBrain), using a convolutional neural network to segment, automatically, the cortical layers in both hemispheres. Our approach overcomes many of the historical challenges with measurement of histological thickness in 2D, and the resultant laminar atlas provides an unprecedented level of precision and detail. We utilized this BigBrain cortical atlas to test whether previously reported thickness gradients, as measured by MRI in sensory and motor processing cortices, were present in a histological atlas of cortical thickness and which cortical layers were contributing to these gradients. Cortical thickness increased across sensory processing hierarchies, primarily driven by layers III, V, and VI. In contrast, motor-frontal cortices showed the opposite pattern, with decreases in total and pyramidal layer thickness from motor to frontal association cortices. These findings illustrate how this laminar atlas will provide a link between single-neuron morphology, mesoscale cortical layering, macroscopic cortical thickness, and, ultimately, functional neuroanatomy.


Assuntos
Córtex Cerebral/anatomia & histologia , Córtex Cerebral/diagnóstico por imagem , Imageamento Tridimensional/métodos , Encéfalo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Redes Neurais de Computação
12.
Neuroimage ; 264: 119733, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36375782

RESUMO

Mesoscopic (0.1-0.5 mm) interrogation of the living human brain is critical for advancing neuroscience and bridging the resolution gap with animal models. Despite the variety of MRI contrasts measured in recent years at the mesoscopic scale, in vivo quantitative imaging of T2* has not been performed. Here we provide a dataset containing empirical T2* measurements acquired at 0.35 × 0.35 × 0.35 mm3 voxel resolution using 7 Tesla MRI. To demonstrate unique features and high quality of this dataset, we generate flat map visualizations that reveal fine-scale cortical substructures such as layers and vessels, and we report quantitative depth-dependent T2* (as well as R2*) values in primary visual cortex and auditory cortex that are highly consistent across subjects. This dataset is freely available at https://doi.org/10.17605/OSF.IO/N5BJ7, and may prove useful for anatomical investigations of the human brain, as well as for improving our understanding of the basis of the T2*-weighted (f)MRI signal.


Assuntos
Córtex Auditivo , Neurociências , Humanos , Imageamento por Ressonância Magnética/métodos , Mapeamento Encefálico/métodos , Encéfalo/diagnóstico por imagem , Córtex Auditivo/diagnóstico por imagem
13.
Epilepsia ; 63(1): 61-74, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34845719

RESUMO

OBJECTIVE: Drug-resistant focal epilepsy is often caused by focal cortical dysplasias (FCDs). The distribution of these lesions across the cerebral cortex and the impact of lesion location on clinical presentation and surgical outcome are largely unknown. We created a neuroimaging cohort of patients with individually mapped FCDs to determine factors associated with lesion location and predictors of postsurgical outcome. METHODS: The MELD (Multi-centre Epilepsy Lesion Detection) project collated a retrospective cohort of 580 patients with epilepsy attributed to FCD from 20 epilepsy centers worldwide. Magnetic resonance imaging-based maps of individual FCDs with accompanying demographic, clinical, and surgical information were collected. We mapped the distribution of FCDs, examined for associations between clinical factors and lesion location, and developed a predictive model of postsurgical seizure freedom. RESULTS: FCDs were nonuniformly distributed, concentrating in the superior frontal sulcus, frontal pole, and temporal pole. Epilepsy onset was typically before the age of 10 years. Earlier epilepsy onset was associated with lesions in primary sensory areas, whereas later epilepsy onset was associated with lesions in association cortices. Lesions in temporal and occipital lobes tended to be larger than frontal lobe lesions. Seizure freedom rates varied with FCD location, from around 30% in visual, motor, and premotor areas to 75% in superior temporal and frontal gyri. The predictive model of postsurgical seizure freedom had a positive predictive value of 70% and negative predictive value of 61%. SIGNIFICANCE: FCD location is an important determinant of its size, the age at epilepsy onset, and the likelihood of seizure freedom postsurgery. Our atlas of lesion locations can be used to guide the radiological search for subtle lesions in individual patients. Our atlas of regional seizure freedom rates and associated predictive model can be used to estimate individual likelihoods of postsurgical seizure freedom. Data-driven atlases and predictive models are essential for evidence-based, precision medicine and risk counseling in epilepsy.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia , Malformações do Desenvolvimento Cortical , Criança , Epilepsia Resistente a Medicamentos/complicações , Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Epilepsia Resistente a Medicamentos/cirurgia , Epilepsia/diagnóstico por imagem , Epilepsia/etiologia , Epilepsia/cirurgia , Liberdade , Humanos , Imageamento por Ressonância Magnética , Malformações do Desenvolvimento Cortical/complicações , Malformações do Desenvolvimento Cortical/diagnóstico por imagem , Malformações do Desenvolvimento Cortical/cirurgia , Estudos Retrospectivos , Convulsões/diagnóstico por imagem , Convulsões/etiologia , Convulsões/cirurgia , Resultado do Tratamento
14.
PLoS Biol ; 17(5): e3000284, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31107870

RESUMO

While the role of cortical microstructure in organising neural function is well established, it remains unclear how structural constraints can give rise to more flexible elements of cognition. While nonhuman primate research has demonstrated a close structure-function correspondence, the relationship between microstructure and function remains poorly understood in humans, in part because of the reliance on post mortem analyses, which cannot be directly related to functional data. To overcome this barrier, we developed a novel approach to model the similarity of microstructural profiles sampled in the direction of cortical columns. Our approach was initially formulated based on an ultra-high-resolution 3D histological reconstruction of an entire human brain and then translated to myelin-sensitive magnetic resonance imaging (MRI) data in a large cohort of healthy adults. This novel method identified a system-level gradient of microstructural differentiation traversing from primary sensory to limbic regions that followed shifts in laminar differentiation and cytoarchitectural complexity. Importantly, while microstructural and functional gradients described a similar hierarchy, they became increasingly dissociated in transmodal default mode and fronto-parietal networks. Meta-analytic decoding of these topographic dissociations highlighted involvement in higher-level aspects of cognition, such as cognitive control and social cognition. Our findings demonstrate a relative decoupling of macroscale functional from microstructural gradients in transmodal regions, which likely contributes to the flexible role these regions play in human cognition.


Assuntos
Córtex Cerebral/anatomia & histologia , Córtex Cerebral/fisiologia , Adulto , Idoso , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino
15.
Neuroimage ; 240: 118327, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34224853

RESUMO

Human brain atlases provide spatial reference systems for data characterizing brain organization at different levels, coming from different brains. Cytoarchitecture is a basic principle of the microstructural organization of the brain, as regional differences in the arrangement and composition of neuronal cells are indicators of changes in connectivity and function. Automated scanning procedures and observer-independent methods are prerequisites to reliably identify cytoarchitectonic areas, and to achieve reproducible models of brain segregation. Time becomes a key factor when moving from the analysis of single regions of interest towards high-throughput scanning of large series of whole-brain sections. Here we present a new workflow for mapping cytoarchitectonic areas in large series of cell-body stained histological sections of human postmortem brains. It is based on a Deep Convolutional Neural Network (CNN), which is trained on a pair of section images with annotations, with a large number of un-annotated sections in between. The model learns to create all missing annotations in between with high accuracy, and faster than our previous workflow based on observer-independent mapping. The new workflow does not require preceding 3D-reconstruction of sections, and is robust against histological artefacts. It processes large data sets with sizes in the order of multiple Terabytes efficiently. The workflow was integrated into a web interface, to allow access without expertise in deep learning and batch computing. Applying deep neural networks for cytoarchitectonic mapping opens new perspectives to enable high-resolution models of brain areas, introducing CNNs to identify borders of brain areas.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/diagnóstico por imagem , Aprendizado Profundo , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Redes Neurais de Computação , Bases de Dados Factuais , Técnicas Histológicas/métodos , Humanos
16.
Neuroimage ; 227: 117622, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33301944

RESUMO

The MNI CIVET pipeline for automated extraction of cortical surfaces and evaluation of cortical thickness from in-vivo human MRI has been extended for processing macaque brains. Processing is performed based on the NIMH Macaque Template (NMT), as the reference template, with the anatomical parcellation of the surface following the D99 and CHARM atlases. The modifications needed to adapt CIVET to the macaque brain are detailed. Results have been obtained using CIVET-macaque to process the anatomical scans of the 31 macaques used to generate the NMT and another 95 macaques from the PRIME-DE initiative. It is anticipated that the open usage of CIVET-macaque will promote collaborative efforts in data collection and processing, sharing, and automated analyses from which the non-human primate brain imaging field will advance.


Assuntos
Espessura Cortical do Cérebro , Córtex Cerebral/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Animais , Macaca mulatta , Imageamento por Ressonância Magnética , Software
17.
Neuroimage ; 237: 118091, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-33991698

RESUMO

High-resolution fMRI in the sub-millimeter regime allows researchers to resolve brain activity across cortical layers and columns non-invasively. While these high-resolution data make it possible to address novel questions of directional information flow within and across brain circuits, the corresponding data analyses are challenged by MRI artifacts, including image blurring, image distortions, low SNR, and restricted coverage. These challenges often result in insufficient spatial accuracy of conventional analysis pipelines. Here we introduce a new software suite that is specifically designed for layer-specific functional MRI: LayNii. This toolbox is a collection of command-line executable programs written in C/C++ and is distributed opensource and as pre-compiled binaries for Linux, Windows, and macOS. LayNii is designed for layer-fMRI data that suffer from SNR and coverage constraints and thus cannot be straightforwardly analyzed in alternative software packages. Some of the most popular programs of LayNii contain 'layerification' and columnarization in the native voxel space of functional data as well as many other layer-fMRI specific analysis tasks: layer-specific smoothing, model-based vein mitigation of GE-BOLD data, quality assessment of artifact dominated sub-millimeter fMRI, as well as analyses of VASO data.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Neuroimagem Funcional , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Software , Neuroimagem Funcional/métodos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos
18.
Hum Brain Mapp ; 42(15): 4996-5009, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34272784

RESUMO

Ultra-high field MRI across the depth of the cortex has the potential to provide anatomically precise biomarkers and mechanistic insights into neurodegenerative disease like Huntington's disease that show layer-selective vulnerability. Here we compare multi-parametric mapping (MPM) measures across cortical depths for a 7T 500 µm whole brain acquisition to (a) layer-specific cell measures from the von Economo histology atlas, (b) layer-specific gene expression, using the Allen Human Brain atlas and (c) white matter connections using high-fidelity diffusion tractography, at a 1.3 mm isotropic voxel resolution, from a 300mT/m Connectom MRI system. We show that R2*, but not R1, across cortical depths is highly correlated with layer-specific cell number and layer-specific gene expression. R1- and R2*-weighted connectivity strength of cortico-striatal and intra-hemispheric cortical white matter connections was highly correlated with grey matter R1 and R2* across cortical depths. Limitations of the layer-specific relationships demonstrated are at least in part related to the high cross-correlations of von Economo atlas cell counts and layer-specific gene expression across cortical layers. These findings demonstrate the potential and limitations of combining 7T MPMs, gene expression and white matter connections to provide an anatomically precise framework for tracking neurodegenerative disease.


Assuntos
Córtex Cerebral , Imagem de Difusão por Ressonância Magnética , Imagem Ecoplanar , Expressão Gênica/fisiologia , Bainha de Mielina , Rede Nervosa , Substância Branca , Adulto , Atlas como Assunto , Córtex Cerebral/anatomia & histologia , Córtex Cerebral/diagnóstico por imagem , Feminino , Humanos , Masculino , Rede Nervosa/anatomia & histologia , Rede Nervosa/diagnóstico por imagem , Doenças Neurodegenerativas/diagnóstico por imagem , Substância Branca/anatomia & histologia , Substância Branca/diagnóstico por imagem , Adulto Jovem
19.
Cereb Cortex ; 30(3): 1752-1767, 2020 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-31602456

RESUMO

Structural asymmetries and sexual dimorphism of the human cerebral cortex have been identified in newborns, infants, children, adolescents, and adults. Some of these findings were linked with cognitive and neuropsychiatric disorders, which have roots in altered prenatal brain development. However, little is known about structural asymmetries or sexual dimorphism of transient fetal compartments that arise in utero. Thus, we aimed to identify structural asymmetries and sexual dimorphism in the volume of transient fetal compartments (cortical plate [CP] and subplate [SP]) across 22 regions. For this purpose, we used in vivo structural T2-weighted MRIs of 42 healthy fetuses (16.43-36.86 gestational weeks old, 15 females). We found significant leftward asymmetry in the volume of the CP and SP in the inferior frontal gyrus. The orbitofrontal cortex showed significant rightward asymmetry in the volume of CP merged with SP. Males had significantly larger volumes in regions belonging to limbic, occipital, and frontal lobes, which were driven by a significantly larger SP. Lastly, we did not observe sexual dimorphism in the growth trajectories of the CP or SP. In conclusion, these results support the hypothesis that structural asymmetries and sexual dimorphism in relative volumes of cortical regions are present during prenatal brain development.


Assuntos
Mapeamento Encefálico , Encéfalo/crescimento & desenvolvimento , Imageamento por Ressonância Magnética , Caracteres Sexuais , Encéfalo/diagnóstico por imagem , Feto/diagnóstico por imagem , Lobo Frontal/diagnóstico por imagem , Humanos , Lactente , Imageamento por Ressonância Magnética/métodos
20.
Neuroimage ; 216: 116862, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32305564

RESUMO

Determining the anatomical source of brain activity non-invasively measured from EEG or MEG sensors is challenging. In order to simplify the source localization problem, many techniques introduce the assumption that current sources lie on the cortical surface. Another common assumption is that this current flow is orthogonal to the cortical surface, thereby approximating the orientation of cortical columns. However, it is not clear which cortical surface to use to define the current source locations, and normal vectors computed from a single cortical surface may not be the best approximation to the orientation of cortical columns. We compared three different surface location priors and five different approaches for estimating dipole vector orientation, both in simulations and visual and motor evoked MEG responses. We show that models with source locations on the white matter surface and using methods based on establishing correspondences between white matter and pial cortical surfaces dramatically outperform models with source locations on the pial or combined pial/white surfaces and which use methods based on the geometry of a single cortical surface in fitting evoked visual and motor responses. These methods can be easily implemented and adopted in most M/EEG analysis pipelines, with the potential to significantly improve source localization of evoked responses.


Assuntos
Córtex Cerebral/fisiologia , Potencial Evocado Motor/fisiologia , Potenciais Evocados Visuais/fisiologia , Neuroimagem Funcional/métodos , Magnetoencefalografia/métodos , Substância Branca/fisiologia , Adulto , Simulação por Computador , Feminino , Neuroimagem Funcional/normas , Humanos , Magnetoencefalografia/normas , Masculino , Pia-Máter/fisiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA