Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 17(6): 704-11, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27064374

RESUMO

The asymmetric partitioning of fate-determining proteins has been shown to contribute to the generation of CD8(+) effector and memory T cell precursors. Here we demonstrate the asymmetric partitioning of mTORC1 activity after the activation of naive CD8(+) T cells. This results in the generation of two daughter T cells, one of which shows increased mTORC1 activity, increased glycolytic activity and increased expression of effector molecules. The other daughter T cell has relatively low mTORC1 activity and increased lipid metabolism, expresses increased amounts of anti-apoptotic molecules and subsequently displays enhanced long-term survival. Mechanistically, we demonstrate a link between T cell antigen receptor (TCR)-induced asymmetric expression of amino acid transporters and RagC-mediated translocation of mTOR to the lysosomes. Overall, our data provide important insight into how mTORC1-mediated metabolic reprogramming affects the fate decisions of T cells.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Divisão Celular/imunologia , Lisossomos/metabolismo , Complexos Multiproteicos/metabolismo , Células Precursoras de Linfócitos T/imunologia , Serina-Treonina Quinases TOR/metabolismo , Animais , Diferenciação Celular , Sobrevivência Celular , Células Cultivadas , Feminino , Glicólise , Memória Imunológica , Metabolismo dos Lipídeos , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transporte Proteico , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais
2.
Nat Immunol ; 15(7): 638-45, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24880459

RESUMO

Lineage fate in the thymus is determined by mutually exclusive expression of the transcription factors ThPOK and Runx3, with ThPOK imposing the CD4(+) lineage fate and Runx3 promoting the CD8(+) lineage fate. While it is known that cytokine signals induce thymocytes to express Runx3, it is not known how ThPOK prevents thymocytes from expressing Runx3 and adopting the CD8(+) lineage fate, nor is it understood why ThPOK itself imposes the CD4(+) lineage fate on thymocytes. We now report that genes encoding members of the SOCS (suppressor of cytokine signaling) family are critical targets of ThPOK and that their induction by ThPOK represses Runx3 expression and promotes the CD4(+) lineage fate. Thus, induction of SOCS-encoding genes is the main mechanism by which ThPOK imposes the CD4(+) lineage fate in the thymus.


Assuntos
Linfócitos T CD4-Positivos/fisiologia , Linhagem da Célula , Subunidade alfa 3 de Fator de Ligação ao Core/fisiologia , Proteínas Supressoras da Sinalização de Citocina/genética , Fatores de Transcrição/fisiologia , Animais , Linfócitos T CD8-Positivos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL
3.
PLoS Pathog ; 19(8): e1011616, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37639455

RESUMO

Dengue represents a growing public health burden worldwide, accounting for approximately 100 million symptomatic cases and tens of thousands of fatalities yearly. Prior infection with one serotype of dengue virus (DENV) is the greatest known risk factor for severe disease upon secondary infection with a heterologous serotype, a risk which increases as serotypes co-circulate in endemic regions. This disease risk is thought to be mediated by IgG-isotype antibodies raised during a primary infection, which poorly neutralize heterologous DENV serotypes and instead opsonize virions for uptake by FcγR-bearing cells. This antibody-dependent enhancement (ADE) of infection leads to a larger proportion of susceptible cells infected, higher viremia and greater immunopathology. We have previously characterized the induction of a serum IgA response, along with the typical IgM and IgG responses, during dengue infection, and have shown that DENV-reactive IgA can neutralize DENV and competitively antagonize IgG-mediated ADE. Here, we evaluate the potential for IgA itself to cause ADE. We show that IgG, but not IgA, mediated ADE of infection in cells expressing both FcαR and FcγRs. IgG-mediated ADE stimulated significantly higher pro-inflammatory cytokine production by primary human macrophages, while IgA did not affect, or slightly suppressed, this production. Mechanistically, we show that DENV/IgG immune complexes bind susceptible cells significantly more efficiently than DENV/IgA complexes or virus alone. Finally, we show that over the course of primary dengue infection, the expression of FcγRI (CD64) increases during the period of acute viremia, while FcγRIIa (CD32) and FcαR (CD89) expression decreases, thereby further limiting the ability of IgA to facilitate ADE in the presence of DENV. Overall, these data illustrate the distinct protective role of IgA during ADE of dengue infection and highlight the potential therapeutic and prognostic value of DENV-specific IgA.


Assuntos
Anticorpos Facilitadores , Dengue , Humanos , Viremia , Imunoglobulina G , Complexo Antígeno-Anticorpo
4.
Nat Immunol ; 14(6): 611-8, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23644504

RESUMO

Natural T helper 17 (nTH17) cells are a population of interleukin 17 (IL-17)-producing cells that acquire effector function in the thymus during development. Here we demonstrate that the serine/threonine kinase Akt has a critical role in regulating nTH17 cell development. Although Akt and the downstream mTORC1-ARNT-HIFα axis were required for generation of inducible TH17 (iTH17) cells, nTH17 cells developed independently of mTORC1. In contrast, mTORC2 and inhibition of Foxo proteins were critical for development of nTH17 cells. Moreover, distinct isoforms of Akt controlled the generation of TH17 cell subsets, as deletion of Akt2, but not of Akt1, led to defective generation of iTH17 cells. These findings define mechanisms regulating nTH17 cell development and reveal previously unknown roles of Akt and mTOR in shaping subsets of T cells.


Assuntos
Proteínas Proto-Oncogênicas c-akt/imunologia , Transdução de Sinais/imunologia , Serina-Treonina Quinases TOR/imunologia , Células Th17/imunologia , Animais , Translocador Nuclear Receptor Aril Hidrocarboneto/genética , Translocador Nuclear Receptor Aril Hidrocarboneto/imunologia , Translocador Nuclear Receptor Aril Hidrocarboneto/metabolismo , Citometria de Fluxo , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/imunologia , Fatores de Transcrição Forkhead/metabolismo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/imunologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Immunoblotting , Interleucina-17/imunologia , Interleucina-17/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Alvo Mecanístico do Complexo 2 de Rapamicina , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Complexos Multiproteicos/imunologia , Complexos Multiproteicos/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/metabolismo , Células Th17/metabolismo
5.
J Immunol ; 208(12): 2749-2760, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35867676

RESUMO

T-bet+ B cells have emerged as a major B cell subset associated with both protective immunity and immunopathogenesis. T-bet is a transcription factor associated with the type I adaptive immune response to intracellular pathogens, driving an effector program characterized by the production of IFN-γ. Murine infection with the intracellular bacterium, Ehrlichia muris, generates protective extrafollicular T cell-independent T-bet+ IgM-secreting plasmablasts, as well as T-bet+ IgM memory cells. Although T-bet is a signature transcription factor for this subset, it is dispensable for splenic CD11c+ memory B cell development, but not for class switching to IgG2c. In addition to the T-bet+ plasmablasts found in the spleen, we show that Ab-secreting cells can also be found within the mouse peritoneal cavity; these cells, as well as their CD138- counterparts, also expressed T-bet. A large fraction of the T-bet+ peritoneal B cells detected during early infection were highly proliferative and expressed CXCR3 and CD11b, but, unlike in the spleen, they did not express CD11c. T-bet+ CD11b+ memory B cells were the dominant B cell population in the peritoneal cavity at 30 d postinfection, and although they expressed high levels of T-bet, they did not require B cell-intrinsic T-bet expression for their generation. Our data uncover a niche for T-bet+ B cells within the peritoneal cavity during intracellular bacterial infection, and they identify this site as a reservoir for T-bet+ B cell memory.


Assuntos
Infecções Bacterianas , Cavidade Peritoneal , Animais , Linfócitos B , Antígeno CD11c/metabolismo , Imunoglobulina M , Camundongos , Camundongos Endogâmicos C57BL , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Fatores de Transcrição
6.
J Infect Dis ; 228(1): 70-79, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37103221

RESUMO

Dengue virus (DENV) is endemic in >100 countries, infecting an estimated 400 million individuals every year. Infection with DENV raises an antibody response primarily targeting viral structural proteins. However, DENV encodes several immunogenic nonstructural (NS) proteins, one of which, NS1, is expressed on the membrane of DENV-infected cells. IgG and IgA isotype antibodies that bind NS1 are abundant in serum following DENV infection. Our study aimed to determine if NS1-binding IgG and IgA isotype antibodies contribute to the clearance of DENV-infected cells by antibody-mediated cellular phagocytosis. We observed that both IgG and IgA isotype antibodies can facilitate monocytic uptake of DENV NS1-expressing cells in an FcγRI- and FcαRI-dependent fashion. Interestingly, this process was antagonized by the presence of soluble NS1, suggesting that the production of soluble NS1 by infected cells may serve as immunological chaff, antagonizing opsonization and clearance of DENV-infected cells.


Assuntos
Vírus da Dengue , Dengue , Humanos , Fagocitose , Imunoglobulina G , Imunoglobulina A/metabolismo , Proteínas não Estruturais Virais/metabolismo , Anticorpos Antivirais
7.
PLoS Pathog ; 17(1): e1009240, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33513191

RESUMO

Dengue human infection studies present an opportunity to address many longstanding questions in the field of flavivirus biology. However, limited data are available on how the immunological and transcriptional response elicited by an attenuated challenge virus compares to that associated with a wild-type DENV infection. To determine the kinetic transcriptional signature associated with experimental primary DENV-1 infection and to assess how closely this profile correlates with the transcriptional signature accompanying natural primary DENV-1 infection, we utilized scRNAseq to analyze PBMC from individuals enrolled in a DENV-1 human challenge study and from individuals experiencing a natural primary DENV-1 infection. While both experimental and natural primary DENV-1 infection resulted in overlapping patterns of inflammatory gene upregulation, natural primary DENV-1 infection was accompanied with a more pronounced suppression in gene products associated with protein translation and mitochondrial function, principally in monocytes. This suggests that the immune response elicited by experimental and natural primary DENV infection are similar, but that natural primary DENV-1 infection has a more pronounced impact on basic cellular processes to induce a multi-layered anti-viral state.


Assuntos
Vírus da Dengue/imunologia , Dengue/imunologia , Regulação da Expressão Gênica , Animais , Linhagem Celular , Dengue/virologia , Humanos , Imunidade/genética , Inflamação/genética , Inflamação/virologia , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/virologia , Análise de Sequência de RNA , Análise de Célula Única
8.
Nat Immunol ; 12(4): 295-303, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21358638

RESUMO

The kinase mTOR has emerged as an important regulator of the differentiation of helper T cells. Here we demonstrate that differentiation into the T(H)1 and T(H)17 subsets of helper T cells was selectively regulated by signaling from mTOR complex 1 (mTORC1) that was dependent on the small GTPase Rheb. Rheb-deficient T cells failed to generate T(H)1 and T(H)17 responses in vitro and in vivo and did not induce classical experimental autoimmune encephalomyelitis (EAE). However, they retained their ability to become T(H)2 cells. Alternatively, when mTORC2 signaling was deleted from T cells, they failed to generate T(H)2 cells in vitro and in vivo but preserved their ability to become T(H)1 and T(H)17 cells. Our data identify mechanisms by which two distinct signaling pathways downstream of mTOR regulate helper cell fate in different ways. These findings define a previously unknown paradigm that links T cell differentiation with selective metabolic signaling pathways.


Assuntos
Diferenciação Celular , Proteínas/metabolismo , Transdução de Sinais , Linfócitos T Auxiliares-Indutores/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Transativadores/metabolismo , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Citocinas/metabolismo , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/metabolismo , Feminino , Citometria de Fluxo , Immunoblotting , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Complexos Multiproteicos , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Proteínas/genética , Proteína Companheira de mTOR Insensível à Rapamicina , Proteína Enriquecida em Homólogo de Ras do Encéfalo , Serina-Treonina Quinases TOR/genética , Células Th1/metabolismo , Células Th17/metabolismo , Células Th2/metabolismo , Transativadores/genética , Fatores de Transcrição
9.
Immunity ; 40(6): 910-23, 2014 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-24909888

RESUMO

The common γ-chain (γc) plays a central role in signaling by IL-2 and other γc-dependent cytokines. Here we report that activated T cells produce an alternatively spliced form of γc mRNA that results in protein expression and secretion of the γc extracellular domain. The soluble form of γc (sγc) is present in serum and directly binds to IL-2Rß and IL-7Rα proteins on T cells to inhibit cytokine signaling and promote inflammation. sγc suppressed IL-7 signaling to impair naive T cell survival during homeostasis and exacerbated Th17-cell-mediated inflammation by inhibiting IL-2 signaling upon T cell activation. Reciprocally, the severity of Th17-cell-mediated inflammatory diseases was markedly diminished in mice lacking sγc. Thus, sγc expression is a naturally occurring immunomodulator that regulates γc cytokine signaling and controls T cell activation and differentiation.


Assuntos
Processamento Alternativo/imunologia , Encefalomielite Autoimune Experimental/imunologia , Cadeias gama de Imunoglobulina/imunologia , Inflamação/imunologia , Células Th17/imunologia , Animais , Autoimunidade , Diferenciação Celular/imunologia , Proliferação de Células , Sobrevivência Celular/imunologia , Cadeias gama de Imunoglobulina/sangue , Cadeias gama de Imunoglobulina/genética , Imunomodulação , Subunidade beta de Receptor de Interleucina-2/imunologia , Subunidade alfa de Receptor de Interleucina-5/imunologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ligação Proteica/imunologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/imunologia , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Transdução de Sinais/imunologia
10.
Cytometry A ; 101(6): 474-482, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35468250

RESUMO

Conventional methods for quantifying and phenotyping antigen-specific lymphocytes can rapidly deplete irreplaceable specimens. This is due to the fact that antigen-specific T and B cells have historically been analyzed in independent assays each requiring millions of cells. A technique that facilitates the simultaneous detection of antigen-specific T and B cells would allow for more thorough immune profiling with significantly reduced sample requirements. To this end, we developed the B and T cell tandem lymphocyte evaluation (BATTLE) assay, which allows for the simultaneous identification of SARS-CoV-2 Spike reactive T and B cells using an activation induced marker (AIM) T cell assay and dual-color B cell antigen probes. Using this assay, we demonstrate that antigen-specific B and T cell subsets can be identified simultaneously using conventional flow cytometry platforms and provide insight into the differential effects of mRNA vaccination on B and T cell populations following natural SARS-CoV-2 infection.


Assuntos
COVID-19 , Linfócitos B , Humanos , SARS-CoV-2 , Linfócitos T , Vacinação
11.
Eur J Immunol ; 46(7): 1669-80, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27129922

RESUMO

IL-7 is essential for T-cell survival but its availability is limited in vivo. Consequently, all peripheral T cells, including recent thymic emigrants (RTEs) are constantly competing for IL-7 to survive. RTEs are required to replenish TCR diversity and rejuvenate the peripheral T-cell pool. However, it remains unknown how RTEs successfully compete with resident mature T cells for IL-7. Moreover, RTEs express low levels of IL-7 receptors, presumably rendering them even less competitive. Here, we show that, surprisingly, RTEs are more responsive to IL-7 than mature naïve T cells as demonstrated by markedly increased STAT5 phosphorylation upon IL-7 stimulation. Nonetheless, adoptive transfer of RTE cells into lymphopenic host mice resulted in slower IL-7-induced homeostatic proliferation and diminished expansion compared to naïve donor T cells. Mechanistically, we found that IL-7 signaling in RTEs preferentially upregulated expression of Bcl-2, which is anti-apoptotic but also anti-proliferative. In contrast, naïve T cells showed diminished Bcl-2 induction but greater proliferative response to IL-7. Collectively, these data indicate that IL-7 responsiveness in RTE is designed to maximize survival at the expense of reduced proliferation, consistent with RTE serving as a subpopulation of T cells rich in diversity but not in frequency.


Assuntos
Homeostase , Interleucina-7/metabolismo , Transdução de Sinais , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Timo/imunologia , Timo/metabolismo , Animais , Apoptose/genética , Apoptose/imunologia , Movimento Celular/imunologia , Proliferação de Células , Sobrevivência Celular/genética , Sobrevivência Celular/imunologia , Proteínas de Ligação a DNA/deficiência , Imunofenotipagem , Ativação Linfocitária/imunologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Receptores de Interleucina-7/metabolismo
12.
Cytokine ; 99: 266-274, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28807496

RESUMO

T cells are both producers and consumers of cytokines, and autocrine cytokine signaling plays a critical role in T cell immunity. IL-15 is a homeostatic cytokine for T cells that also controls inflammatory immune responses. An autocrine role of T cell-derived IL-15, however, remains unclear. Here we examined IL-15 expression and signaling upon effector T cell differentiation in mice, and, surprisingly, found that CD4 T cells did not express IL-15. CD4 T cells lacked Il15 gene reporter activity, did not contain IL-15 transcripts, and did not produce IL-15Rα, the proprietary IL-15 receptor required for IL-15 trans-presentation. Moreover, IL-15 failed to inhibit Th17 cell differentiation and failed to generate Foxp3+ Treg cells in vitro. IL-2, which utilizes the same IL-2Rß/γc receptor complex, however, successfully did so. Exogenous IL-15 only exerted bioactivity and controlled T cell differentiation when it was trans-presented by IL-15Rα. Consequently, IL-15Rα-bound IL-15, but not free IL-15, suppressed Th17 cell differentiation and induced Treg cell generation. Collectively, these results reveal the absence of an IL-15 autocrine loop in CD4 T cells and strongly suggest that IL-15 trans-presentation by non-CD4 T cells is the primary mechanism via which IL-15 controls CD4 effector T cell differentiation.


Assuntos
Linfócitos T CD4-Positivos/citologia , Diferenciação Celular , Interleucina-15/metabolismo , Animais , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Fatores de Transcrição Forkhead/metabolismo , Genes Reporter , Interleucina-17 , Camundongos Endogâmicos C57BL , Receptores de Interleucina-15/metabolismo , Receptores de Interleucina-2/metabolismo , Transdução de Sinais , Linfócitos T Reguladores/metabolismo
13.
Cell Mol Life Sci ; 73(2): 253-69, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26468051

RESUMO

Originally identified as the third subunit of the high-affinity IL-2 receptor complex, the common γ-chain (γc) also acts as a non-redundant receptor subunit for a series of other cytokines, collectively known as γc family cytokines. γc plays essential roles in T cell development and differentiation, so that understanding the molecular basis of its signaling and regulation is a critical issue in T cell immunology. Unlike most other cytokine receptors, γc is thought to be constitutively expressed and limited in its function to the assembly of high-affinity cytokine receptors. Surprisingly, recent studies reported a series of findings that unseat γc as a simple housekeeping gene, and unveiled γc as a new regulatory molecule in T cell activation and differentiation. Cytokine-independent binding of γc to other cytokine receptor subunits suggested a pre-association model of γc with proprietary cytokine receptors. Also, identification of a γc splice isoform revealed expression of soluble γc proteins (sγc). sγc directly interacted with surface IL-2Rß to suppress IL-2 signaling and to promote pro-inflammatory Th17 cell differentiation. As a result, endogenously produced sγc exacerbated autoimmune inflammatory disease, while the removal of endogenous sγc significantly ameliorated disease outcome. These data provide new insights into the role of both membrane and soluble γc in cytokine signaling, and open new venues to interfere and modulate γc signaling during immune activation. These unexpected discoveries further underscore the perspective that γc biology remains largely uncharted territory that invites further exploration.


Assuntos
Citocinas/imunologia , Inflamação/imunologia , Subunidade gama Comum de Receptores de Interleucina/imunologia , Linfócitos T/imunologia , Processamento Alternativo , Animais , Humanos , Inflamação/genética , Subunidade gama Comum de Receptores de Interleucina/química , Subunidade gama Comum de Receptores de Interleucina/genética , Janus Quinase 3/imunologia , Ativação Linfocitária , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/imunologia , Receptores de Citocinas/imunologia , Transdução de Sinais , Linfócitos T/citologia , Linfócitos T/metabolismo , Células Th17/citologia , Células Th17/imunologia , Células Th17/metabolismo
14.
Immunol Rev ; 249(1): 43-58, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22889214

RESUMO

Upon antigen recognition, naive T cells undergo rapid expansion and activation. The energy requirements for this expansion are formidable, and T-cell activation is accompanied by dramatic changes in cellular metabolism. Furthermore, the outcome of antigen engagement is guided by multiple cues derived from the immune microenvironment. Mammalian target of rapamycin (mTOR) is emerging as a central integrator of these signals playing a critical role in driving T-cell differentiation and function. Indeed, multiple metabolic programs are controlled by mTOR signaling. In this review, we discuss the role of mTOR in regulating metabolism and how these pathways intersect with the ability of mTOR to integrate cues that guide the outcome of T-cell receptor engagement.


Assuntos
Metabolismo Energético , Ativação Linfocitária , Linfócitos T/imunologia , Linfócitos T/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Diferenciação Celular , Humanos , Via de Pentose Fosfato , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Linfócitos T/citologia
15.
J Immunol ; 188(10): 4721-9, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22556133

RESUMO

T cells must integrate a diverse array of intrinsic and extrinsic signals upon Ag recognition. Although these signals have canonically been categorized into three distinct events--Signal 1 (TCR engagement), Signal 2 (costimulation or inhibition), and Signal 3 (cytokine exposure)--it is now appreciated that many other environmental cues also dictate the outcome of T cell activation. These include nutrient availability, the presence of growth factors and stress signals, as well as chemokine exposure. Although all of these distinct inputs initiate unique signaling cascades, they also modulate the activity of the evolutionarily conserved serine/threonine kinase mammalian target of rapamycin (mTOR). Indeed, mTOR serves to integrate these diverse environmental inputs, ultimately transmitting a signaling program that determines the fate of newly activated T cells. In this review, we highlight how diverse signals from the immune microenvironment can guide the outcome of TCR activation through the activation of the mTOR pathway.


Assuntos
Antígenos/metabolismo , Ativação Linfocitária/imunologia , Transdução de Sinais/imunologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Serina-Treonina Quinases TOR/fisiologia , Animais , Humanos , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T/fisiologia , Serina-Treonina Quinases TOR/metabolismo
16.
J Immunol ; 189(5): 2234-45, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22844117

RESUMO

Although early events in the pathogenesis of acute lung injury (ALI) have been defined, little is known about the mechanisms mediating resolution. To search for determinants of resolution, we exposed wild type (WT) mice to intratracheal LPS and assessed the response at intervals to day 10, when injury had resolved. Inducible NO synthase (iNOS) was significantly upregulated in the lung at day 4 after LPS. When iNOS-/- mice were exposed to intratracheal LPS, early lung injury was attenuated; however, recovery was markedly impaired compared with WT mice. iNOS-/- mice had increased mortality and sustained increases in markers of lung injury. Adoptive transfer of WT (iNOS+/+) bone marrow-derived monocytes or direct adenoviral gene delivery of iNOS into injured iNOS-/- mice restored resolution of ALI. Irradiated bone marrow chimeras confirmed the protective effects of myeloid-derived iNOS but not of epithelial iNOS. Alveolar macrophages exhibited sustained expression of cosignaling molecule CD86 in iNOS-/- mice compared with WT mice. Ab-mediated blockade of CD86 in iNOS-/- mice improved survival and enhanced resolution of lung inflammation. Our findings show that monocyte-derived iNOS plays a pivotal role in mediating resolution of ALI by modulating lung immune responses, thus facilitating clearance of alveolar inflammation and promoting lung repair.


Assuntos
Lesão Pulmonar Aguda/enzimologia , Lesão Pulmonar Aguda/terapia , Monócitos/enzimologia , Monócitos/imunologia , Óxido Nítrico Sintase Tipo II/uso terapêutico , Lesão Pulmonar Aguda/imunologia , Animais , Antígeno B7-2/biossíntese , Linhagem Celular , Linhagem Celular Transformada , Modelos Animais de Doenças , Mediadores da Inflamação/metabolismo , Mediadores da Inflamação/uso terapêutico , Macrófagos Peritoneais/enzimologia , Macrófagos Peritoneais/imunologia , Masculino , Camundongos , Camundongos Congênicos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/patologia , Óxido Nítrico Sintase Tipo II/deficiência
17.
Nat Microbiol ; 9(5): 1356-1367, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38561497

RESUMO

Dengue human infection models present an opportunity to explore the potential of a vaccine, anti-viral or immuno-compound for clinical benefit in a controlled setting. Here we report the outcome of a phase 1 open-label assessment of a low-dose dengue virus 3 (DENV-3) challenge model (NCT04298138), in which nine participants received a subcutaneous inoculation with 0.5 ml of a 1.4 × 103 plaque-forming unit per ml suspension of the attenuated DENV-3 strain CH53489. The primary and secondary endpoints of the study were to assess the safety of this DENV-3 strain in healthy flavivirus-seronegative individuals. All participants developed RNAaemia within 7 days after inoculation with peak titre ranging from 3.13 × 104 to 7.02 × 108 genome equivalents per ml. Solicited symptoms such as fever and rash, clinical laboratory abnormalities such as lymphopenia and thrombocytopenia, and self-reported symptoms such as myalgia were consistent with mild-to-moderate dengue in all volunteers. DENV-3-specific seroconversion and memory T cell responses were observed within 14 days after inoculation as assessed by enzyme-linked immunosorbent assay and interferon-gamma-based enzyme-linked immunospot. RNA sequencing and serum cytokine analysis revealed anti-viral responses that overlapped with the period of viraemia. The magnitude and frequency of clinical and immunologic endpoints correlated with an individual's peak viral titre.


Assuntos
Anticorpos Antivirais , Vacinas contra Dengue , Vírus da Dengue , Dengue , Viremia , Humanos , Vírus da Dengue/imunologia , Dengue/imunologia , Dengue/virologia , Adulto , Vacinas contra Dengue/imunologia , Vacinas contra Dengue/administração & dosagem , Vacinas contra Dengue/efeitos adversos , Masculino , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Feminino , Adulto Jovem , Citocinas/sangue , Citocinas/metabolismo , RNA Viral/sangue , Soroconversão , Células T de Memória/imunologia , Pessoa de Meia-Idade
18.
Lancet Infect Dis ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38679035

RESUMO

BACKGROUND: Dengue human infection models (DHIMs) are important tools to down-select dengue vaccine candidates and establish tetravalent efficacy before advanced clinical field trials. We aimed to provide data for the safety and immunogenicity of DHIM and evaluate dengue vaccine efficacy. METHODS: We performed an open-label, phase 1 trial at the University of Maryland (Baltimore, MD, USA). Eligible participants were healthy individuals aged 18-50 years who either previously received a tetravalent dengue purified inactivated vaccine prime followed by a live-attenuated vaccine boost (ie, the vaccinee group), or were unvaccinated flavivirus-naive participants (ie, the control group). Participants in the vaccinee group with detectable pre-challenge dengue virus-1 neutralising antibody titres and flavivirus-naive participants in the control group were inoculated with dengue virus-1 strain 45AZ5 in the deltoid region, 27-65 months following booster dosing. These participants were followed-up from days 4-16 following dengue virus-1 live virus human challenge, with daily real-time quantitative PCR specific to dengue virus-1 RNA detection, and dengue virus-1 solicited local and systemic adverse events were recorded. The primary outcomes were safety (ie, solicited local and systemic adverse events) and vaccine efficacy (ie, dengue virus-1 RNAaemia) following dengue challenge. This study is registered with ClinicalTrials.gov, number NCT04786457. FINDINGS: In January 2021, ten eligible participants were enrolled; of whom, six (60%) were in the vaccinee group and four (40%) were in the control group. Daily quantitative PCR detected dengue virus-1 RNA in nine (90%) of ten participants (five [83%] of six in the vaccinee group and all four [100%] in the control group). The mean onset of RNAaemia occurred on day 5 (SD 1·0) in the vaccinee group versus day 8 (1·5) in the control group (95% CI 1·1-4·9; p=0·007), with a trend towards reduced RNAaemia duration in the vaccinee group compared with the control group (8·2 days vs 10·5 days; 95% CI -0·08 to 4·68; p=0·056). Mild-to-moderate symptoms (nine [90%] of ten), leukopenia (eight [89%] of nine), and elevated aminotransferases (seven [78%] of nine) were commonly observed. Severe adverse events were detected only in the vaccinee group (fever ≥38·9°C in three [50%] of six, headache in one [17%], and transient grade 4 aspartate aminotransferase elevation in one [17%]). No deaths were reported. INTERPRETATION: Participants who had tetravalent dengue purified inactivated vaccine prime and live-attenuated vaccine boost were unprotected against dengue virus-1 infection and further showed increased clinical, immunological, and transcriptomic evidence for inflammation potentially mediated by pre-existing infection-enhancing antibodies. This study highlights the impact of small cohort, human challenge models studying dengue pathogenesis and downstream vaccine development. FUNDING: Military Infectious Disease Research Program and Medical Technology Enterprise Consortium and Advanced Technology International.

19.
Vaccine ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38890105

RESUMO

The first dengue "endgame" summit was held in Syracuse, NY over August 9 and 10, 2023. Organized and hosted by the Institute for Global Health and Translational Sciences at SUNY Upstate Medical University, the gathering brought together researchers, clinicians, drug and vaccine developers, government officials, and other key stakeholders in the dengue field for a highly collaborative and discussion-oriented event. The objective of the gathering was to discuss the current state of dengue around the world, what dengue "control" might look like, and what a potential roadmap might look like to achieve functional dengue control. Over the course of 7 sessions, speakers with a diverse array of expertise highlighted both current and historic challenges associated with dengue control, the state of dengue countermeasure development and deployment, as well as fundamental virologic, immunologic, and medical barriers to achieving dengue control. While sustained eradication of dengue was considered challenging, attendees were optimistic that significant reduction in the burden of dengue can be achieved by integration of vector control with effective application of therapeutics and vaccines.

20.
Am J Respir Cell Mol Biol ; 48(5): 635-46, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23349051

RESUMO

Acute respiratory distress syndrome (ARDS) causes significant morbidity and mortality. Exacerbating factors increasing the risk of ARDS remain unknown. Supplemental oxygen is often necessary in both mild and severe lung disease. The potential effects of supplemental oxygen may include augmentation of lung inflammation by inhibiting anti-inflammatory pathways in alveolar macrophages. We sought to determine oxygen-derived effects on the anti-inflammatory A2A adenosinergic (ADORA2A) receptor in macrophages, and the role of the ADORA2A receptor in lung injury. Wild-type (WT) and ADORA2A(-/-) mice received intratracheal lipopolysaccharide (IT LPS), followed 12 hours later by continuous exposure to 21% oxygen (control mice) or 60% oxygen for 1 to 3 days. We measured the phenotypic endpoints of lung injury and the alveolar macrophage inflammatory state. We tested an ADORA2A-specific agonist, CGS-21680 hydrochloride, in LPS plus oxygen-exposed WT and ADORA2A(-/-) mice. We determined the specific effects of myeloid ADORA2A, using chimera experiments. Compared with WT mice, ADORA2A(-/-) mice exposed to IT LPS and 60% oxygen demonstrated significantly more histologic lung injury, alveolar neutrophils, and protein. Macrophages from ADORA2A(-/-) mice exposed to LPS plus oxygen expressed higher concentrations of proinflammatory cytokines and cosignaling molecules. CGS-21680 prevented the oxygen-induced augmentation of lung injury after LPS only in WT mice. Chimera experiments demonstrated that the transfer of WT but not ADORA2A(-/-) bone marrow cells into irradiated ADORA2A(-/-) mice reduced lung injury after LPS plus oxygen, demonstrating myeloid ADORA2A protection. ADORA2A is protective against lung injury after LPS and oxygen. Oxygen after LPS increases macrophage activation to augment lung injury by inhibiting the ADORA2A pathway.


Assuntos
Lesão Pulmonar Aguda/metabolismo , Macrófagos Alveolares/metabolismo , Oxigênio/toxicidade , Receptor A2A de Adenosina/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/imunologia , Adenosina/análogos & derivados , Adenosina/farmacologia , Agonistas do Receptor A2 de Adenosina/farmacologia , Animais , Líquido da Lavagem Broncoalveolar , Células Cultivadas , Quimiocinas/metabolismo , Técnicas de Inativação de Genes , Mediadores da Inflamação/fisiologia , Lipopolissacarídeos/farmacologia , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/patologia , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxigenoterapia , Fenetilaminas/farmacologia , Receptor A2A de Adenosina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA